iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-39074-6_16
Voting with a Logarithmic Number of Cards | SpringerLink
Skip to main content

Voting with a Logarithmic Number of Cards

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7956))

Abstract

Consider an election where there are two candidates and several voters. Such an election usually requires the same number of ballot papers as the number of voters. In this paper, we show that such an election can be conducted using only a logarithmic number of cards with two suits—black and red—with identical backs. That is, we can securely compute the summation of a number of inputs (0s and 1s) using a logarithmic number of cards with respect to the number of inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balogh, J., Csirik, J.A., Ishai, Y., Kushilevitz, E.: Private computation using a PEZ dispenser. Theoretical Computer Science 306, 69–84 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. den Boer, B.: More efficient match-making and satisfiability: the five card trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  3. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Communications of the ACM 39(5), 77–85 (1996)

    Article  Google Scholar 

  4. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  5. Goldreich, O.: Foundations of Cryptography II: Basic Applications. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  6. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–606. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Australasian Journal of Combinatorics 36, 279–293 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Moran, T., Naor, M.: Polling with physical envelopes: A rigorous analysis of a human-centric protocol. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 88–108. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theoretical Computer Science 191, 173–183 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Schneider, T.: Engineering Secure Two-Party Computation Protocols. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  12. Stiglic, A.: Computations with a deck of cards. Theoretical Computer Science 259, 671–678 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yao, A.: Protocols for secure computations. In: Proceedings of the 23th IEEE Symposium on Foundations of Computer Science, FOCS 1982, pp. 160–164 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mizuki, T., Asiedu, I.K., Sone, H. (2013). Voting with a Logarithmic Number of Cards. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds) Unconventional Computation and Natural Computation. UCNC 2013. Lecture Notes in Computer Science, vol 7956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39074-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39074-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39073-9

  • Online ISBN: 978-3-642-39074-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics