Abstract
Coarse space correction is essential to achieve algorithmic scalability in domain decomposition methods. Our goal here is to build a robust coarse space for Schwarz– type preconditioners for elliptic problems with highly heterogeneous coefficients when the discontinuities are not just across but also along subdomain interfaces, where classical results break down [3, 6, 9, 15].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
T. Chartier, R. D. Falgout, V. E. Henson, J. Jones, T. Manteuffel, S. McCormick, J. Ruge, and P. S. Vassilevski. Spectral AMGe (ρAMGe). SIAM J. Sci. Comput., 25(1):1–26, 2003. ISSN 1064-8275. doi: 10.1137/S106482750139892X. URL http://dx.doi.org/10.1137/S106482750139892X.
V. Dolean, F. Nataf, Scheichl R., and N. Spillane. Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet–to–Neumann maps. http://hal.archives-ouvertes.fr/hal-00586246/fr/, 2011. URL http://hal.archives-ouvertes.fr/hal-00586246/fr/.
M. Dryja, M. V. Sarkis, and O. B. Widlund. Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math., 72(3):313–348, 1996. ISSN 0029-599X. doi: 10.1007/s002110050172. URL http://dx.doi.org/10.1007/s002110050172.
J. Galvis and Y. Efendiev. Domain decomposition preconditioners for multiscale flows in high contrast media: Reduced dimension coarse spaces. Multiscale Modeling & Simulation, 8(5):1621–1644, 2010. doi: 10.1137/100790112.
Frédéric Hecht. FreeFem++. Laboratoire J.L. Lions, Université Pierre et Marie Curie, http://www.freefem.org/ff++/, 3.7 edition, 2010.
J. Mandel and M. Brezina. Balancing domain decomposition for problems with large jumps in coefficients. Math. Comp., 65:1387–1401, 1996. ISSN 0025-5718. doi: 10.1090/S0025-5718-96-00757-0. URL http://dx.doi.org/10.1090/S0025-5718-96-00757-0.
F. Nataf, H. Xiang, and V. Dolean. A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps. C. R. Mathématique, 348(21–22):1163–1167, 2010.
R. A. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems. SIAM J. Numer. Anal., 24(2): 355–365, 1987. ISSN 0036-1429. doi: 10.1137/0724027. URL http://dx.doi.org/10.1137/0724027.
C. Pechstein and R. Scheichl. Scaling up through domain decomposition. Appl. Anal., 88(10–11):1589–1608, 2009. ISSN 0003-6811. doi: 10.1080/00036810903157204. URL http://dx.doi.org/10.1080/00036810903157204.
C. Pechstein and R. Scheichl. Weighted Poincaré inequalities. Technical Report NuMa-Report 2010-10, Institute of Computational Mathematics, Johannes Kepler University, Linz, December 2010. submitted.
C. Pechstein and R. Scheichl. Weighted Poincaré inequalities and applications in domain decomposition. In Y. Huang, R. Kornhuber, O. Widlund, and J. Xu, editors, Domain Decomposition Methods in Science and Engineering XIX, volume 78 of LNCSE, pages 197–204. Springer, 2011.
C. Pechstein and R. Scheichl. Analysis of FETI methods for multiscale PDEs - Part II: Interface variation. Numer. Math., 2011. Published online 21 February 2011.
R. Scheichl, P. S. Vassilevski, and L. T. Zikatanov. Weak approximation properties of elliptic projections with functional constraints. Technical Report LLNL-JRNL-462079, Lawrence Livermore National Lab, 2011.
R. Scheichl, P.S. Vassilevski, and L.T. Zikatanov. Multilevel methods for elliptic problems with highly varying coefficients on non-aligned coarse grids. SIAM J Numer Anal, 2011. Accepted subject to minor corrections.
A. Toselli and O. B. Widlund. Domain decomposition methods – algorithms and theory. Springer, Berlin, 2005. ISBN 3-540-20696-5.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dolean, V., Nataf, F., Scheichl, R., Spillane, N. (2013). A Two-Level Schwarz Preconditioner for Heterogeneous Problems. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35275-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-35275-1_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35274-4
Online ISBN: 978-3-642-35275-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)