iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-34481-7_29
Analog Neural Network Approach for Source Localization Using Time-of-Arrival Measurements | SpringerLink
Skip to main content

Analog Neural Network Approach for Source Localization Using Time-of-Arrival Measurements

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7664))

Included in the following conference series:

  • 2874 Accesses

Abstract

Source localization can be achieved by making use of the time-of-arrival (TOA) measurements, but it is not a trivial task because the TOAs have nonlinear relationships with the source coordinates. This paper exploits a neural network technique, namely, Lagrange programming neural networks, for TOA-based localization. We also investigate the local stability of our formulation. Simulation results demonstrate that the performance of the proposed location estimator approaches the optimality benchmark of Cram\({\rm\acute{e}}\)r-Rao lower bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stojmenovic, I.: Handbook of Sensor Networks: Algorithms and Architectures. Wiley, New York (2005)

    Book  Google Scholar 

  2. Huang, Y., Benesty, J. (eds.): Audio Signal Processing for Next-Generation Multimedia Communication Systems. Kluwer Academic Publishers (2004)

    Google Scholar 

  3. Liberti, J.C., Rappaport, T.S.: Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications. Prentice-Hall (1999)

    Google Scholar 

  4. So, H.C.: Source localization: Algorithms and analysis. In: Zekavat, S.A., Buehrer, R.M. (eds.) Handbook of Position Location: Theory, Practice, and Advances. John Wiley & Sons, Inc. (2011)

    Google Scholar 

  5. Chen, J.C., Hudson, R.E., Yao, K.: Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near field 50(8), 1843–1854 (2002)

    Google Scholar 

  6. Chan, Y.T., Ho, K.C.: A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing 42(8), 1905–1915 (1994)

    Article  MathSciNet  Google Scholar 

  7. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. of the National Academy of Sciences 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  8. Chua, L.O., Lin, G.N.: Nonlinear programming without computation. IEEE Trans. on Circuits Syst. 31, 182–188 (1984)

    Article  MathSciNet  Google Scholar 

  9. Gao, X.B.: Exponential stability of globally projected dynamics systems. IEEE Trans. Neural Networks 14, 426–431 (2003)

    Article  Google Scholar 

  10. Hu, X., Wang, J.: A recurrent neural network for solving a class of general variational inequalities. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics 37(3), 528–539 (2007)

    Article  Google Scholar 

  11. Sum, J., Leung, C.S., Tam, P., Young, G., Kan, W., Chan, L.W.: Analysis for a class of winner-take-all model. IEEE Trans. Neural Networks 10(1), 64–71 (1999)

    Article  Google Scholar 

  12. Wang, J.: Analysis and design of a k-winners-take-all model with a single state variable and the heaviside step activation function. IEEE Trans. Neural Networks 21(9), 1496–1506 (2010)

    Article  Google Scholar 

  13. Xiao, Y., Liu, Y., Leung, C.S., Sum, J., Ho, K.: Analysis on the convergence time of dual neural network-based kwta. IEEE Trans. Neural Networks and Learning Systems 23(4), 676–682 (2012)

    Article  Google Scholar 

  14. Zhang, S., Constantinidies, A.G.: Lagrange programming neural networks. IEEE Trans. on Circuits and Systems II 39, 441–452 (1992)

    Article  MATH  Google Scholar 

  15. Caffery, J.J.: Wireless Location in CDMA Cellular Radio Systems. Kluwer Academic (2000)

    Google Scholar 

  16. Sprito, M.A.: On the accuracy of cellular mobile station location estimation. IEEE Trans. Veh. Technol. 50, 674–685 (2001)

    Article  Google Scholar 

  17. Torrieri, D.J.: Statistical theory of passive location systems. IEEE Trans. on Aerospace and Electronic Systems 20, 183–197 (1984)

    Article  Google Scholar 

  18. Cheung, K.W., Ma, W.-K., So, H.C.: Accurate approximation algorithm for TOA-based maximum likelihood mobile location using semidefinite programming. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Montreal, Canada, vol. 2, pp. 145–148 (May 2004)

    Google Scholar 

  19. Biswas, P., Liang, T.-C., Toh, K.-C., Ye, Y., Wang, T.-C.: Semidefinite programming approaches for sensor network localization with noisy distance measurements. IEEE Transactions on Automation Science and Engineering 3(4), 360–371 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leung, CS., So, H.C., Chan, F.K.W., Constantinides, A.G. (2012). Analog Neural Network Approach for Source Localization Using Time-of-Arrival Measurements. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34481-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34481-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34480-0

  • Online ISBN: 978-3-642-34481-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics