iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-33269-2_12
Modeling of Spiking Analog Neural Circuits with Hebbian Learning, Using Amorphous Semiconductor Thin Film Transistors with Silicon Oxide Nitride Semiconductor Split Gates | SpringerLink
Skip to main content

Modeling of Spiking Analog Neural Circuits with Hebbian Learning, Using Amorphous Semiconductor Thin Film Transistors with Silicon Oxide Nitride Semiconductor Split Gates

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7552))

Included in the following conference series:

  • 4173 Accesses

Abstract

This paper uses the results of the characterization of amorphous semiconductor thin film transistors (TFTs) with a split gate and the quasi-permanent memory structure referred to as silicon oxide nitride semiconductor (SONOS) gates, to model spiking neural circuits with Hebbian learning ability. MOSFETs using organic (tris 8-hydroxyquinolinate aluminum (Alq3), copper phthalocyanine (CuPc)) and inorganic (ZnO) amorphous materials can be fabricated with split gates, which will provide multiple synaptic inputs. A simple Hebbian learning circuit is added to charge and discharge the SONOS device. The primary result of this work is the demonstration of the practicality of using SONOS amorphous organic TFTs with multiple gates and imbedded Hebbian learning capability in spiking neuron analog circuits. The use of these elements allows for the design and fabrication of high-density 3-dimensional circuits that can achieve the interconnect density of biological neural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, C., Kwack, Y., Kim, S.H., An, T.K., Hong, K., Nama, S., Park, M., Choi, W.S., Park, C.E.: Ambipolar thin-film transistors and an inverter based on pentacene/self-assembled monolayer modified ZnO hybrid structures for balanced hole and electron mobilities. Organic Electronics 12, 411–418 (2011)

    Article  Google Scholar 

  2. Kitamura, M., Imada, T., Arakawa, Y.: Organic Transistor Circuits for Application to Organic Light-Emitting-Diode Displays Jpn. J. Appl. Phys. 42, 2483–2487 (2003); Part 1, No. 4B. The Japan Society of Applied Physics (April 2003)

    Google Scholar 

  3. Sakanoue, T., Yahiro, M., Adachi, C., Takimiya, K., Toshimitsu, A.: Electrical characteristics of single-component ambipolar Organic field-effect transistors and effects of air exposure on them. J. Appl. Phys. 103, 094509 (2008)

    Article  Google Scholar 

  4. van Schaijk, R., van Duuren, M., Mei, W.Y., van der Jeugd, K., Rothschild, A., Demand, M.: Oxide-Nitride-Oxide Layer Optimization for Reliable Embedded SONOS Memories. Microelectronic Engineering 72, 395–398 (2004)

    Article  Google Scholar 

  5. Libsch, F.R., White, M.H.: Charge Transport and Storage of Low Programming Voltage SONOS/MONOS memory devices. Solid State Electronics 33(1), 105–126 (1990)

    Article  Google Scholar 

  6. White, M.H., Yang, Y., Purwar, A., French, M.L.: A low voltage SONOS nonvolatile semiconductor memory technology. IEEE Trans. Comp., Packag., Manufact. Technol. A 20, 190–195 (1997)

    Article  Google Scholar 

  7. Shlimak, I., Friedland, K.-J., Kravchenko, S.V., Ginodman, V., Butenko, A., Klapwijk, T.M.: Longitudinal resistivity in the quantum Hall effect regime in a split-gate Si MOSFET with variable electron density. Phys. Stat. Sol. 5(3), 839–841 (2008)

    Article  Google Scholar 

  8. Akiya, M., Nakashima, S.: Novel Split-Gate MOSFET. IEEE Transactions on Electron Devices ED-32(3) (1985)

    Google Scholar 

  9. van Schaik, A.: Building blocks for electronic spiking neural networks. Neural Networks 14, 617–628 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wood, R., Bruce, I., Mascher, P. (2012). Modeling of Spiking Analog Neural Circuits with Hebbian Learning, Using Amorphous Semiconductor Thin Film Transistors with Silicon Oxide Nitride Semiconductor Split Gates. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33269-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33268-5

  • Online ISBN: 978-3-642-33269-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics