iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-31537-4_33
Outcome Prediction for Patients with Severe Traumatic Brain Injury Using Permutation Entropy Analysis of Electronic Vital Signs Data | SpringerLink
Skip to main content

Outcome Prediction for Patients with Severe Traumatic Brain Injury Using Permutation Entropy Analysis of Electronic Vital Signs Data

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2012)

Abstract

Permutation entropy is computationally efficient, robust to noise, and effective to measure complexity. We used this technique to quantify the complexity of continuous vital signs recorded from patients with traumatic brain injury (TBI). Using permutation entropy calculated from early vital signs (initial 10~20% of patient hospital stay time), we built classifiers to predict in-hospital mortality, and mobility measured by 3-month Extended Glasgow Outcome Score (GOSE). Sixty patients with severe TBI produced a skewed dataset that we evaluated for accuracy, sensitivity and specificity. With early vital signs data, the overall prediction accuracy achieved 91.67% for mortality, and 76.67% for 3-month GOSE in testing datasets, using the leave-one-out cross validation. We also applied Receiver Operating Characteristic analysis to compare classifiers built from different learning methods. Those results support the applicability of permutation entropy in analyzing the dynamic behavior of biomedical time series for early prediction of mortality and long-term patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bandt, C., Pompe, B.: Permutation entropy – a natural complexity measure for time series. Phys. Rev. Lett. 88(17) (April 2002)

    Google Scholar 

  2. Bezerianos, A., Tong, S., Thakor, N.: Time-dependent entropy estimation of EEG rhythm changes following brain ischemia. Ann. Biomed. Eng. 31(2), 221–232 (2003)

    Article  Google Scholar 

  3. Bruzzo, A.A., Gesierich, B., Santi, M., Tassinari, C.A., Birbrumer, N., Rubboli, G.: Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. a preliminary study. Neurol Sci. 29(1), 3–9 (2008)

    Article  Google Scholar 

  4. Cai, Y., Qiu, Y., Wei, L., Zhang, W., Hu, S., Smith, P.R., Crabtree, V.P., Tong, S., Thakor, N.V., Zhu, Y.: Complex character analysis of heart rate variability following brain asphyxia. Med Eng. Phys. 28(4), 297–303 (2006)

    Article  Google Scholar 

  5. Cao, Y., Wen Tung, W., Gao, J.B., Protopopescu, V.A., Hively, L.M.: Detecting dynamical changes in time series using the permutation entropy. Phys. Rev. E 70(4) (October 2004)

    Google Scholar 

  6. Dutton, R.P., Stansbury, L.G., Leone, S., Kramer, E., Hess, J.R., Scalea, T.M.: Trauma mortality in mature trauma systems: are we doing better? an analysis of trauma mortality patterns, 1997-2008. J Trauma 69(3), 620–626 (2010)

    Article  Google Scholar 

  7. Fawcelt, T.: Roc graphs: Notes and practical considerations for data mining researchers. In: Intelligent Enterprise Technologies Laboratory HP Laboratories Palo Alto, HPL-2003-4 (January 2003)

    Google Scholar 

  8. Gao, D., Hu, J., Buckley, T., White, K., Hass, C.: Shannon and Renyi entropy to classify effects of mild traumatic brain injury on postural sway. PLoS One 6(9) (2011)

    Google Scholar 

  9. Guo, D.: Local entropy map: A nonparametric approach to detecting spatially varying multivariate relationships. Int. J. Geogr. Inf. Sci. 24, 1367–1389 (2010)

    Article  Google Scholar 

  10. Jennett, B., Snoek, J., Bond, M.R., Brooks, N.: Disability after severe head injury: observations on the use of the glasgow outcome scale. J. Neurol Neurosurg Psychiatry 44(4), 285–293 (1981)

    Article  Google Scholar 

  11. Kahraman, S., Dutton, R.P., Hu, P., Stansbury, L., et al.: Heart rate and pulse pressure variability are associated with intractable intracranial hypertension after severe traumatic brain injury. Clinical investigation 22(4) (October 2010)

    Google Scholar 

  12. Kahraman, S., Hu, P., Stein, D., Stansbury, L., Dutton, R., Xiao, Y., Hess, J., Scalea, T.: Dynamic three-dimensional scoring of cerebral perfusion pressure and intracranial pressure provides a brain trauma index that predicts outcome in patients with severe traumatic brain injury. J. Trauma 70(3), 547–553 (2011)

    Article  Google Scholar 

  13. Li, X., Cui, S., Voss, L.J.: Using permutation entropy to measure the electroencephalographic effects of sevoflurane. Anesthesiology 109(3), 448–456 (2008)

    Article  Google Scholar 

  14. Li, X., Ouyang, G., Richards, D.A.: Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 77(1), 70–74 (2007)

    Article  Google Scholar 

  15. Lopes, F.M., de Oliveira, E.A., Cesar, J.R.M.: Inference of gene regulatory networks from time series by Tsallis entropy. BMC Systems Biology 5(61) (2011)

    Google Scholar 

  16. Nicolaou, N., Georgeiou, J.: The use of permutation entropy to characterize sleep electroencephalograms. Clin. EEG Neurosci. 42(1), 24–28 (2011)

    Article  Google Scholar 

  17. Olofsen, E., Sleigh, J.W., Dahan, A.: Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect. Br. J. Anaesth. 101(6), 810–821 (2008)

    Article  Google Scholar 

  18. Ouyang, G., Dang, C., Richards, D.A., Li, X.: Ordinal pattern based similarity analysis for EGG reordering. Clin. Neurophysiol. 121(5), 694–703 (2010)

    Article  Google Scholar 

  19. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74. MIT Press (1999)

    Google Scholar 

  20. Provost, F., Domingos, P.: Well-trained pets: Improving probability estimation trees (2000)

    Google Scholar 

  21. Stein, D., Hu, P.F., Brenner, M., Sheth, K., et al.: Brief episodes of intracranial hypertension and cerebral hypoperfusion are associated with poor functional outcome after severe traumatic brain injury. Journal of Trauma-Injury Infection & Critical Care 71(2), 364–374 (2011)

    Article  Google Scholar 

  22. Sun, X., Zou, Y., Nikiforova, V., Kurths, J., Walther, D.: The complexity of gene expression dynamics revealed by permutation entropy. BMC Bioinformatics 11, 607 (2010)

    Article  Google Scholar 

  23. Zanin, M.: Forbidden patterns in financial time series. Chaos 18(1), 013119 (2008)

    Google Scholar 

  24. Zhang, D., Jia, X., Ding, H., Ye, D., Thakor, N.V.: Application of Tsallis entropy to EEG: quantifying the presence of burst suppression after asphyxial cardiac arrest in rats. IEEE Trans. Biomed. Eng. 57(4), 867–874 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kalpakis, K. et al. (2012). Outcome Prediction for Patients with Severe Traumatic Brain Injury Using Permutation Entropy Analysis of Electronic Vital Signs Data. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2012. Lecture Notes in Computer Science(), vol 7376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31537-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31537-4_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31536-7

  • Online ISBN: 978-3-642-31537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics