iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-31265-6_29
Efficient Exponential Time Algorithms for Edit Distance between Unordered Trees | SpringerLink
Skip to main content

Efficient Exponential Time Algorithms for Edit Distance between Unordered Trees

  • Conference paper
Combinatorial Pattern Matching (CPM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7354))

Included in the following conference series:

Abstract

This paper presents efficient exponential time algorithms for the unordered tree edit distance problem, which is known to be NP-hard. For a general case, an \(O(1.26^{n_1+n_2})\) time algorithm is presented, where n 1 and n 2 are the numbers of nodes in two input trees. This algorithm is obtained by a combination of dynamic programming, exhaustive search, and maximum weighted bipartite matching. For bounded degree trees over a fixed alphabet, it is shown that the problem can be solved in \(O((1+\epsilon)^{n_1+n_2})\) time for any fixed ε > 0. This result is achieved by avoiding duplicate calculations for identical subsets of small subtrees.

This work was partially supported by the Collaborative Research Programs of Institute for Chemical Research, Kyoto University and National Institute of Informatics. T.A. and T.T. were partially supported by JSPS, Japan: Grant-in-Aid 22650045 and Grant-in-Aid 23700017, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akutsu, T., Fukagawa, D., Takasu, A., Tamura, T.: Exact algorithms for computing the tree edit distance between unordered trees. Theoret. Comput. Sci. 412, 352–364 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akutsu, T., Mori, T., Tamura, T., Fukagawa, D., Takasu, A., Tomita, E.: An improved clique-based method for computing edit distance between unordered trees and its application to comparison of glycan structures. In: Proc. 5th International Conference on Complex, Intelligent and Software Intensive System, pp. 536–540. IEEE Press, New York (2011)

    Chapter  Google Scholar 

  3. Akutsu, T., Fukagawa, D., Takasu, A.: Improved approximation of the largest common subtree of two unordered trees of bounded height. Inf. Proc. Lett. 109, 165–170 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bille, P.: A survey on tree edit distance and related problem. Theoret. Comput. Sci. 337, 217–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Canzar, S., Elbassioni, K., Klau, G.W., Mestre, J.: On Tree-Constrained Matchings and Generalizations. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 98–109. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition algorithm for tree edit distance. ACM Trans. Algorithms 6, 1 (2009)

    Article  MathSciNet  Google Scholar 

  7. Fukagawa, D., Akutsu, T., Takasu, A.: Constant Factor Approximation of Edit Distance of Bounded Height Unordered Trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 7–17. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Halldórsson, M.M., Tanaka, K.: Approximation and special cases of common subtrees and editing distance. In: Nagamochi, H., Suri, S., Igarashi, Y., Miyano, S., Asano, T. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 75–84. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  9. Hirata, K., Yamamoto, Y., Kuboyama, T.: Improved MAX SNP-Hard Results for Finding an Edit Distance between Unordered Trees. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 402–415. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Kilpeläinen, P., Mannila, H.: Ordered and unordered tree inclusion. SIAM J. Computing 24, 340–356 (1995)

    Article  MATH  Google Scholar 

  11. Shasha, D., Wang, J.T.-L., Zhang, K., Shih, F.Y.: Exact and approximate algorithms for unordered tree matching. IEEE Trans. System, Man, and Cybernetics 24, 668–678 (1994)

    Article  MathSciNet  Google Scholar 

  12. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 4220–4433 (1979)

    Article  MathSciNet  Google Scholar 

  13. Tovey, C.A.: A simplified satisfiability problem. Disc. Appl. Math. 8, 85–89 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered labeled trees. Inf. Proc. Lett. 42, 133–139 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled trees. Inf. Proc. Lett. 49, 249–254 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akutsu, T., Tamura, T., Fukagawa, D., Takasu, A. (2012). Efficient Exponential Time Algorithms for Edit Distance between Unordered Trees. In: Kärkkäinen, J., Stoye, J. (eds) Combinatorial Pattern Matching. CPM 2012. Lecture Notes in Computer Science, vol 7354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31265-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31265-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31264-9

  • Online ISBN: 978-3-642-31265-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics