iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-31075-1_50
Analyzing Migration Phenomena with Spatial Autocorrelation Techniques | SpringerLink
Skip to main content

Analyzing Migration Phenomena with Spatial Autocorrelation Techniques

  • Conference paper
Computational Science and Its Applications – ICCSA 2012 (ICCSA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7334))

Included in the following conference series:

Abstract

In recent times a complete lack of attention to migration phenomena, in national and global policies, led to a huge concentration of foreigners in major cities of Europe and USA. This trend has been faced without effective policies and programs. Consequently, a great opportunity has been transformed in a great threat and the word immigration is generally associated with the term social security. In less than one century, Italy has been transformed from a country originating great migration flows to a country which is the destination of migration flows. The aim of this paper is to examine foreign immigration in Italy distinguishing according to nationality of foreigners. In order to analyze this phenomenon Shannon and Simpson Diversity Indices to measure the level of entropy in a distribution and the variation in categorical data have been used. The spatial dimension of migration flows has been analyzed in this paper using Spatial Autocorrelation techniques and more particularly Local Indicators of Spatial Association in order to analyze the highest values of a foreigner group considering the relationship with the surrounding municipalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anselin, L.: Spatial Econometrics: Methods and Models. Kluwer Academic, Boston (1988)

    Google Scholar 

  2. Anselin, L.: Local Indicators of Spatial Association-LISA. Geographical Analysis 27, 93–115 (1995)

    Article  Google Scholar 

  3. Goodchild, M.F.: Spatial Autocorrelation. Catmog 47. Geo Books, Norwich (1986)

    Google Scholar 

  4. Tobler, W.R.: A computer movie simulating urban growth in the Detroit region. Economic Geography 46(2), 234–240 (1970)

    Article  Google Scholar 

  5. Lee, J., Wong, D.W.S.: Statistical analysis with ArcView GIS, p. 192. John Wiley and Sons, New York (2001)

    Google Scholar 

  6. Scardaccione, G., Scorza, F., Casas, G.L., Murgante, B.: Spatial Autocorrelation Analysis for the Evaluation of Migration Flows: The Italian Case. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6016, pp. 62–76. Springer, Heidelberg (2010), doi:10.1007/978-3-642-12156-2_5

    Chapter  Google Scholar 

  7. Geary, R.: The contiguity ratio and statistical mapping. The Incorporated Statistician (5) (1954)

    Google Scholar 

  8. Moran, P.: The interpretation of statistical maps. Journal of the Royal Statistical Society (10) (1948)

    Google Scholar 

  9. O’Sullivan, D., Unwin, D.: Geographic Information Analysis. John Wiley & Sons (2002)

    Google Scholar 

  10. Nagendra, H.: Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Applied Geography 22, 175–186 (2002)

    Article  Google Scholar 

  11. Weaver, W., Shannon, C.E.: The Mathematical Theory of Communication. University of Illinois, Urbana (1949)

    MATH  Google Scholar 

  12. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    MathSciNet  MATH  Google Scholar 

  13. Simpson, E.H.: Measurement of diversity. Nature 163, 688 (1949)

    Article  MATH  Google Scholar 

  14. Peet, R.K.: The measurement of species diversity. Annual Review of Ecology and Systematics 5, 285–307 (1974)

    Article  Google Scholar 

  15. Elden, G., Kayadjanian, M., Vidal, C.: Quantifying Landscape Structures: spatial and temporal dimensions, ch. 2. From Land Cover to Landscape Diversity in the European Union (2000), http://ec.europa.eu/agriculture/publi/landscape/ch2.htm

  16. Gibbs, J.P., Martin, W.T.: Urbanization, technology and the division of labor. American Sociological Review 27, 667–677 (1962)

    Article  Google Scholar 

  17. Borruso, G.: Geographical Analysis of Foreign Immigration and Spatial Patterns in Urban Areas: Density Estimation and Spatial Segregation. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 459–474. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Borruso, G.: Geographical Analysis of Foreign Immigration and Spatial Patterns in Urban Areas: Density Estimation, Spatial Segregation and Diversity Analysis. In: Gavrilova, M.L., Tan, C.J.K. (eds.) Transactions on Computational Science VI. LNCS, vol. 5730, pp. 301–323. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Murgante, B., Borruso, G. (2012). Analyzing Migration Phenomena with Spatial Autocorrelation Techniques. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2012. ICCSA 2012. Lecture Notes in Computer Science, vol 7334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31075-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31075-1_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31074-4

  • Online ISBN: 978-3-642-31075-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics