iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-29828-8_14
Reconsidering Mixed Integer Programming and MIP-Based Hybrids for Scheduling | SpringerLink
Skip to main content

Abstract

Despite the success of constraint programming (CP ) for scheduling, the much wider penetration of mixed integer programming (MIP ) technology into business applications means that many practical scheduling problems are being addressed with MIP, at least as an initial approach. Furthermore, there has been impressive and well-documented improvements in the power of generic MIP solvers over the past decade. We empirically demonstrate that on an existing set of resource allocation and scheduling problems standard MIP and CP models are now competitive with the state-of-the-art manual decomposition approach. Motivated by this result, we formulate two tightly coupled hybrid models based on constraint integer programming (CIP ) and demonstrate that these models, which embody advances in CP and MIP, are able to out-perform the CP, MIP, and decomposition models. We conclude that both MIP and CIP are technologies that should be considered along with CP for solving scheduling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achterberg, T., Berthold, T.: Hybrid Branching. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 309–311. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optimization 4(1), 4–20 (2007); special issue: Mixed Integer Programming

    Article  MathSciNet  MATH  Google Scholar 

  3. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin (2007)

    Google Scholar 

  4. Achterberg, T.: SCIP: Solving Constraint Integer Programs. Mathematical Programming Computation 1(1), 1–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Achterberg, T., Brinkmann, R., Wedler, M.: Property checking with constraint integer programming. ZIB-Report 07-37, Zuse Institute Berlin (2007)

    Google Scholar 

  6. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-based Scheduling. Kluwer Academic Publishers (2001)

    Google Scholar 

  7. Bartak, R., Salido, M.A., Rossi, F.: New trends on constraint satisfaction, planning, and scheduling: a survey. The Knowledge Engineering Review 25(3), 249–279 (2010)

    Article  Google Scholar 

  8. Beck, J.C., Refalo, P.: A hybrid approach to scheduling with earliness and tardiness costs. Annals of Operations Research 118, 49–71 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beck, J.C.: Checking-Up on Branch-and-Check. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 84–98. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Beck, J.C., Fox, M.S.: Constraint directed techniques for scheduling with alternative activities. Artificial Intelligence 121(1-2), 211–250 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berthold, T., Heinz, S., Lübbecke, M.E., Möhring, R.H., Schulz, J.: A Constraint Integer Programming Approach for Resource-Constrained Project Scheduling. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 313–317. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Berthold, T., Heinz, S., Pfetsch, M.E.: Nonlinear Pseudo-Boolean Optimization: Relaxation or Propagation? In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 441–446. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs. ZIB-Report 09-23, Zuse Institute Berlin (2009)

    Google Scholar 

  14. Debruyne, R., Bessière, C.: Some practicable filtering techniques for the constraint satisfaction problem. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 412–417 (1997)

    Google Scholar 

  15. Heinz, S., Beck, J.C.: Solving resource allocation/scheduling problems with constraint integer programming. In: Salido, M.A., Barták, R., Policella, N. (eds.) Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS 2011), pp. 23–30 (2011)

    Google Scholar 

  16. Heinz, S., Beck, J.C.: Reconsidering mixed integer programming and MIP-based hybrids for scheduling. ZIB-Report 12-05, Zuse Institute Berlin (2012)

    Google Scholar 

  17. Heinz, S., Schulz, J.: Explanations for the Cumulative Constraint: An Experimental Study. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 400–409. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Hooker, J.N.: Planning and Scheduling to Minimize Tardiness. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 314–327. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Hooker, J.N.: Integrated Methods for Optimization. Springer (2007)

    Google Scholar 

  20. Hooker, J.N.: Planning and scheduling by logic-based Benders decomposition. Operations Research 55, 588–602 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical Programming 96, 33–60 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Mathematical Programming Computation 3(2), 103–163 (2011)

    Article  MathSciNet  Google Scholar 

  23. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  24. Martin, P., Shmoys, D.B.: A New Approach to Computing Optimal Schedules for the Job-Shop Scheduling Problem. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 389–403. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  25. Milano, M., Van Hentenryck, P. (eds.): Hybrid Optimization: The Ten Years of CPAIOR. Springer (2010)

    Google Scholar 

  26. Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Explaining the cumulative propagator. Constraints, 1–33 (2010)

    Google Scholar 

  27. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. thesis, Technische Universität Berlin (1996)

    Google Scholar 

  28. Yunes, T.H., Aron, I.D., Hooker, J.N.: An integrated solver for optimization problems. Operations Research 58(2), 342–356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heinz, S., Beck, J.C. (2012). Reconsidering Mixed Integer Programming and MIP-Based Hybrids for Scheduling. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds) Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems. CPAIOR 2012. Lecture Notes in Computer Science, vol 7298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29828-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29828-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29827-1

  • Online ISBN: 978-3-642-29828-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics