iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-25330-0_23
Border Samples Detection for Data Mining Applications Using Non Convex Hulls | SpringerLink
Skip to main content

Border Samples Detection for Data Mining Applications Using Non Convex Hulls

  • Conference paper
Advances in Soft Computing (MICAI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7095))

Included in the following conference series:

Abstract

Border points are those instances located at the outer margin of dense clusters of samples. The detection is important in many areas such as data mining, image processing, robotics, geographic information systems and pattern recognition. In this paper we propose a novel method to detect border samples. The proposed method makes use of a discretization and works on partitions of the set of points. Then the border samples are detected by applying an algorithm similar to the presented in reference [8] on the sides of convex hulls. We apply the novel algorithm on classification task of data mining; experimental results show the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graph. 13(1), 43–72 (1994)

    Article  MATH  Google Scholar 

  2. Bader, M.A., Sablatnig, M., Simo, R., Benet, J., Novak, G., Blanes, G.: Embedded real-time ball detection unit for the yabiro biped robot. In: 2006 International Workshop on Intelligent Solutions in Embedded Systems (June 2006)

    Google Scholar 

  3. Zhang, J., Kasturi, R.: Weighted boundary points for shape analysis. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 1598–1601 (August 2010)

    Google Scholar 

  4. Hoogs, A., Collins, R.: Object boundary detection in images using a semantic ontology. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006, p. 111 (June 2006)

    Google Scholar 

  5. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Transactions on Information Theory 29(4), 551–559 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Galton, A., Duckham, M.: What is the Region Occupied by a Set of Points? In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006. LNCS, vol. 4197, pp. 81–98. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Xia, C., Hsu, W., Lee, M., Ooi, B.: Border: efficient computation of boundary points. IEEE Transactions on Knowledge and Data Engineering 18(3), 289–303 (2006)

    Article  Google Scholar 

  8. Moreira, J.C.A., Santos, M.Y.: Concave hull: A k-nearest neighbours approach for the computation of the region occupied by a set of points. In: GRAPP (GM/R), pp. 61–68 (2007), http://dblp.uni-trier.de

  9. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  10. O’Rourke, J.: Computational Geometry in C. Cambridge University Press (1998), hardback ISBN: 0521640105; Paperback: ISBN 0521649765, http://maven.smith.edu/~orourke/books/compgeom.html

  11. Noble, B., Daniel, J.W.: Applied Linear Algebra, 3rd edn. (1988)

    Google Scholar 

  12. Yu, W., Li, X.: On-line fuzzy modeling via clustering and support vector machines. Information Sciences 178, 4264–4279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ho, T., Kleinberg, E.: Checkerboard data set (1996), http://www.cs.wisc.edu/math-prog/mpml.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

López Chau, A., Li, X., Yu, W., Cervantes, J., Mejía-Álvarez, P. (2011). Border Samples Detection for Data Mining Applications Using Non Convex Hulls. In: Batyrshin, I., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2011. Lecture Notes in Computer Science(), vol 7095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25330-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25330-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25329-4

  • Online ISBN: 978-3-642-25330-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics