iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-25283-9_19
On Leveraging Stochastic Models for Remote Attestation | SpringerLink
Skip to main content

On Leveraging Stochastic Models for Remote Attestation

  • Conference paper
Trusted Systems (INTRUST 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6802))

Included in the following conference series:

  • 804 Accesses

Abstract

Remote attestation is an essential feature of Trusted Computing that allows a challenger to verify the trustworthiness of a target platform. Existing approaches towards remote attestation are largely static or too restrictive. In this paper, we present a new paradigm in remote attestation that leverages recent advancements in intrusion detection systems. This new approach allows the modeling of an application’s behavior through stochastic models of machine learning. We present the idea of using sequences of system calls as a metric for our stochastic models to predict the trustworthiness of a target application. This new remote attestation technique enables detection of unknown and zero-day malware as opposed to the known-good and known-bad classification currently being used. We provide the details of challenges faced in the implementation of this new paradigm and present empirical evidence supporting the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a TCG-based Integrity Measurement Architecture. In: SSYM 2004: Proceedings of the 13th Conference on USENIX Security Symposium (2004)

    Google Scholar 

  2. Shacham, H.: The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86). In: Proceedings of the 14th ACM conference on Computer and Communications Security (CCS 2008), pp. 552–561. ACM, New York (2007)

    Google Scholar 

  3. Gu, L., Ding, X., Deng, R., Xie, B., Mei, H.: Remote Attestation on Program Execution. In: STC 2008: Proceedings of the 2008 ACM Workshop on Scalable Trusted Computing. ACM, New York (2008)

    Google Scholar 

  4. Loscocco, P.A., Wilson, P.W., Pendergrass, J.A., McDonell, C.D.: Linux Kernel Integrity Measurement Using Contextual Inspection. In: STC 2007: Proceedings of the 2007 ACM Workshop on Scalable Trusted Computing, pp. 21–29. ACM, New York (2007)

    Chapter  Google Scholar 

  5. Davi, L., Sadeghi, A., Winandy, M.: Dynamic integrity measurement and attestation: towards defense against return-oriented programming attacks. In: Proceedings of the 2009 ACM Workshop on Scalable Trusted Computing, pp. 49–54. ACM, New York (2009)

    Chapter  Google Scholar 

  6. Alam, M., Zhang, X., Nauman, M., Ali, T., Seifert, J.P.: Model-based Behavioral Attestation. In: SACMAT 2008: Proceedings of the Thirteenth ACM Symposium on Access Control Models and Technologies. ACM Press, New York (2008)

    Google Scholar 

  7. Nauman, M., Khan, S., Zhang, X.: Beyond Kernel-level Integrity Measurement: Enabling Remote Attestation for the Android Platform. In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 1–15. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A sense of self for unix processes. In: Proceedings of IEEE Symposium on Security and Privacy, 1996, pp. 120–128 (1996)

    Google Scholar 

  9. Mehdi, B., Ahmed, F., Khayyam, S., Farooq, M.: Towards a Theory of Generalizing System Call Representation For In-Execution Malware Detection. In: ICC 2010: Proceedings of the IEEE International Conference on Communications (2010)

    Google Scholar 

  10. Mutz, D., Robertson, W., Vigna, G., Kemmerer, R.: Exploiting execution context for the detection of anomalous system calls. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 1–20. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. University of New Mexico: Computer Immune Systems – Datasets, http://www.cs.unm.edu/~immsec/systemcalls.htm (accessed May, 2010)

  12. Pearson, S.: Trusted Computing Platforms: TCPA Technology in Context. Prentice Hall PTR, Upper Saddle River (2002)

    Google Scholar 

  13. Jaeger, T., Sailer, R., Shankar, U.: PRIMA: Policy-Reduced Integrity Measurement Architecture. In: SACMAT 2006: Proceedings of the Eleventh ACM Symposium on Access Control Models and Technologies, pp. 19–28. ACM Press, New York (2006)

    Chapter  Google Scholar 

  14. Nauman, M., Alam, M., Ali, T., Zhang, X.: Remote Attestation of Attribute Updates and Information Flows in a UCON System. In: Chen, L., Mitchell, C.J., Martin, A. (eds.) Trust 2009. LNCS, vol. 5471, pp. 63–80. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Gu, L., Cheng, Y., Ding, X., Deng, R., Guo, Y., Shao, W.: Remote Attestation on Function Execution. In: Trust 2009: Proceedings of the 2009 International Conference on Trusted Systems (2009)

    Google Scholar 

  16. Axelsson, S.: Intrusion detection systems: A survey and taxonomy. Technical report, Department of Computer Engineering, Chalmers University (2000)

    Google Scholar 

  17. Krügel, C., Tóth, T.: Using decision trees to improve signature-based intrusion detection. In: Vigna, G., Krügel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 173–191. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Hofmeyr, S., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls. Journal of Computer Security 6(3), 151–180 (1998)

    Article  Google Scholar 

  19. Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system. Evolutionary Computation 8(4), 443–473 (2000)

    Article  Google Scholar 

  20. Wilson, W., Feyereisl, J., Aickelin, U.: Detecting Motifs in System Call Sequences. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 157–172. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. TCG: TCG Specification Architecture Overview v1.2, pp 11–12. Technical report, Trusted Computing Group (April 2004)

    Google Scholar 

  22. Wright, C., Cowan, C., Morris, J., Smalley, S., Kroah-Hartman, G.: Linux security module framework. In: Ottawa Linux Symposium. Citeseer (2002)

    Google Scholar 

  23. Heavens, V.X.: Information and hosting for computer viruses, http://vx.netlux.org/ (accessed June 02, 2010)

  24. Bayes, T.: Learning Bayesian networks: The combination of knowledge and statistical data. Philosophical Transactions of Royal Society of London 53, 370–418 (1763)

    Google Scholar 

  25. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20(3), 197–243 (1995)

    MATH  Google Scholar 

  26. Quinlan, J.: C4.5: programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  27. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann Pub., San Francisco (2005)

    MATH  Google Scholar 

  28. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

  29. Lippmann, R., Fried, D., Graf, I., Haines, J., Kendall, K., McClung, D., Weber, D., Webster, S., Wyschogrod, D., Cunningham, R., et al.: Evaluating intrusion detection systems: the 1998 DARPA off-line intrusion detection evaluation. In: Proceedings of DARPA Information Survivability Conference and Exposition, DISCEX 2000, vol. 2 (2000)

    Google Scholar 

  30. Ali, M., Khan, H., Sajjad, A., Khayam, S.: On achieving good operating points on an ROC plane using stochastic anomaly score prediction. In: Proceedings of the 16th ACM Conference on Computer and Communications Security (CCS 2009), pp. 314–323. ACM, New York (2009)

    Google Scholar 

  31. McCune, J., Parno, B., Perrig, A., Reiter, M., Isozaki, H.: Flicker: An execution infrastructure for TCB minimization. In: Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008, pp. 315–328. ACM, New York (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ali, T., Nauman, M., Zhang, X. (2011). On Leveraging Stochastic Models for Remote Attestation. In: Chen, L., Yung, M. (eds) Trusted Systems. INTRUST 2010. Lecture Notes in Computer Science, vol 6802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25283-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25283-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25282-2

  • Online ISBN: 978-3-642-25283-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics