Abstract
Remote attestation is an essential feature of Trusted Computing that allows a challenger to verify the trustworthiness of a target platform. Existing approaches towards remote attestation are largely static or too restrictive. In this paper, we present a new paradigm in remote attestation that leverages recent advancements in intrusion detection systems. This new approach allows the modeling of an application’s behavior through stochastic models of machine learning. We present the idea of using sequences of system calls as a metric for our stochastic models to predict the trustworthiness of a target application. This new remote attestation technique enables detection of unknown and zero-day malware as opposed to the known-good and known-bad classification currently being used. We provide the details of challenges faced in the implementation of this new paradigm and present empirical evidence supporting the effectiveness of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a TCG-based Integrity Measurement Architecture. In: SSYM 2004: Proceedings of the 13th Conference on USENIX Security Symposium (2004)
Shacham, H.: The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86). In: Proceedings of the 14th ACM conference on Computer and Communications Security (CCS 2008), pp. 552–561. ACM, New York (2007)
Gu, L., Ding, X., Deng, R., Xie, B., Mei, H.: Remote Attestation on Program Execution. In: STC 2008: Proceedings of the 2008 ACM Workshop on Scalable Trusted Computing. ACM, New York (2008)
Loscocco, P.A., Wilson, P.W., Pendergrass, J.A., McDonell, C.D.: Linux Kernel Integrity Measurement Using Contextual Inspection. In: STC 2007: Proceedings of the 2007 ACM Workshop on Scalable Trusted Computing, pp. 21–29. ACM, New York (2007)
Davi, L., Sadeghi, A., Winandy, M.: Dynamic integrity measurement and attestation: towards defense against return-oriented programming attacks. In: Proceedings of the 2009 ACM Workshop on Scalable Trusted Computing, pp. 49–54. ACM, New York (2009)
Alam, M., Zhang, X., Nauman, M., Ali, T., Seifert, J.P.: Model-based Behavioral Attestation. In: SACMAT 2008: Proceedings of the Thirteenth ACM Symposium on Access Control Models and Technologies. ACM Press, New York (2008)
Nauman, M., Khan, S., Zhang, X.: Beyond Kernel-level Integrity Measurement: Enabling Remote Attestation for the Android Platform. In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 1–15. Springer, Heidelberg (2010)
Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A sense of self for unix processes. In: Proceedings of IEEE Symposium on Security and Privacy, 1996, pp. 120–128 (1996)
Mehdi, B., Ahmed, F., Khayyam, S., Farooq, M.: Towards a Theory of Generalizing System Call Representation For In-Execution Malware Detection. In: ICC 2010: Proceedings of the IEEE International Conference on Communications (2010)
Mutz, D., Robertson, W., Vigna, G., Kemmerer, R.: Exploiting execution context for the detection of anomalous system calls. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 1–20. Springer, Heidelberg (2007)
University of New Mexico: Computer Immune Systems – Datasets, http://www.cs.unm.edu/~immsec/systemcalls.htm (accessed May, 2010)
Pearson, S.: Trusted Computing Platforms: TCPA Technology in Context. Prentice Hall PTR, Upper Saddle River (2002)
Jaeger, T., Sailer, R., Shankar, U.: PRIMA: Policy-Reduced Integrity Measurement Architecture. In: SACMAT 2006: Proceedings of the Eleventh ACM Symposium on Access Control Models and Technologies, pp. 19–28. ACM Press, New York (2006)
Nauman, M., Alam, M., Ali, T., Zhang, X.: Remote Attestation of Attribute Updates and Information Flows in a UCON System. In: Chen, L., Mitchell, C.J., Martin, A. (eds.) Trust 2009. LNCS, vol. 5471, pp. 63–80. Springer, Heidelberg (2009)
Gu, L., Cheng, Y., Ding, X., Deng, R., Guo, Y., Shao, W.: Remote Attestation on Function Execution. In: Trust 2009: Proceedings of the 2009 International Conference on Trusted Systems (2009)
Axelsson, S.: Intrusion detection systems: A survey and taxonomy. Technical report, Department of Computer Engineering, Chalmers University (2000)
Krügel, C., Tóth, T.: Using decision trees to improve signature-based intrusion detection. In: Vigna, G., Krügel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 173–191. Springer, Heidelberg (2003)
Hofmeyr, S., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls. Journal of Computer Security 6(3), 151–180 (1998)
Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system. Evolutionary Computation 8(4), 443–473 (2000)
Wilson, W., Feyereisl, J., Aickelin, U.: Detecting Motifs in System Call Sequences. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 157–172. Springer, Heidelberg (2008)
TCG: TCG Specification Architecture Overview v1.2, pp 11–12. Technical report, Trusted Computing Group (April 2004)
Wright, C., Cowan, C., Morris, J., Smalley, S., Kroah-Hartman, G.: Linux security module framework. In: Ottawa Linux Symposium. Citeseer (2002)
Heavens, V.X.: Information and hosting for computer viruses, http://vx.netlux.org/ (accessed June 02, 2010)
Bayes, T.: Learning Bayesian networks: The combination of knowledge and statistical data. Philosophical Transactions of Royal Society of London 53, 370–418 (1763)
Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20(3), 197–243 (1995)
Quinlan, J.: C4.5: programs for machine learning. Morgan Kaufmann, San Francisco (1993)
Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann Pub., San Francisco (2005)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)
Lippmann, R., Fried, D., Graf, I., Haines, J., Kendall, K., McClung, D., Weber, D., Webster, S., Wyschogrod, D., Cunningham, R., et al.: Evaluating intrusion detection systems: the 1998 DARPA off-line intrusion detection evaluation. In: Proceedings of DARPA Information Survivability Conference and Exposition, DISCEX 2000, vol. 2 (2000)
Ali, M., Khan, H., Sajjad, A., Khayam, S.: On achieving good operating points on an ROC plane using stochastic anomaly score prediction. In: Proceedings of the 16th ACM Conference on Computer and Communications Security (CCS 2009), pp. 314–323. ACM, New York (2009)
McCune, J., Parno, B., Perrig, A., Reiter, M., Isozaki, H.: Flicker: An execution infrastructure for TCB minimization. In: Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008, pp. 315–328. ACM, New York (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ali, T., Nauman, M., Zhang, X. (2011). On Leveraging Stochastic Models for Remote Attestation. In: Chen, L., Yung, M. (eds) Trusted Systems. INTRUST 2010. Lecture Notes in Computer Science, vol 6802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25283-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-25283-9_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25282-2
Online ISBN: 978-3-642-25283-9
eBook Packages: Computer ScienceComputer Science (R0)