iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-24600-5_30
Generic Physiological Features as Predictors of Player Experience | SpringerLink
Skip to main content

Generic Physiological Features as Predictors of Player Experience

  • Conference paper
Affective Computing and Intelligent Interaction (ACII 2011)

Abstract

This paper examines the generality of features extracted from heart rate (HR) and skin conductance (SC) signals as predictors of self-reported player affect expressed as pairwise preferences. Artificial neural networks are trained to accurately map physiological features to expressed affect in two dissimilar and independent game surveys. The performance of the obtained affective models which are trained on one game is tested on the unseen physiological and self-reported data of the other game. Results in this early study suggest that there exist features of HR and SC such as average HR and one and two-step SC variation that are able to predict affective states across games of different genre and dissimilar game mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Picard, R.: Affective computing. The MIT press, Cambridge (2000)

    Google Scholar 

  2. Cacioppo, J., Tassinary, L., Berntson, G.: Psychophysiological science. In: Handbook of Psychophysiology, vol. 2, pp. 3–23 (2000)

    Google Scholar 

  3. Yannakakis, G., Martínez, H., Jhala, A.: Towards affective camera control in games. User Modeling and User-Adapted Interaction 20, 313–340 (2010), doi:10.1007/s11257-010-9078-0

    Article  Google Scholar 

  4. Andreassi, J.: Psychophysiology: Human Behavior and Physiological Response (2000)

    Google Scholar 

  5. Cacioppo, J., Berntson, G., Larsen, J., Poehlmann, K., Ito, T., et al.: The psychophysiology of emotion. In: Handbook of Emotions, pp. 119–142 (1993)

    Google Scholar 

  6. Calvo, R., D’Mello, S.: Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Transactions on Affective Computing, 18–37 (2010)

    Google Scholar 

  7. Rani, P., Liu, C., Sarkar, N., Vanman, E.: An empirical study of machine learning techniques for affect recognition in human–robot interaction. Pattern Analysis & Applications 9(1), 58–69 (2006)

    Article  Google Scholar 

  8. Fernandez, R., Picard, R.: Signal processing for recognition of human frustration. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 1998, vol. 6, pp. 3773–3776. IEEE, Los Alamitos (1998)

    Google Scholar 

  9. Gilleade, K., Dix, A., Allanson, J.: Affective videogames and modes of affective gaming: assist me, challenge me, emote me. In: Proc. DIGRA 2005 (2005)

    Google Scholar 

  10. Hudlicka, E.: Affective game engines: motivation and requirements. In: Proceedings of the 4th International Conference on Foundations of Digital Games, pp. 299–306. ACM, New York (2009)

    Google Scholar 

  11. Kivikangas, J., Ekman, I., Chanel, G., Jarvela, S., Salminen, M., Cowley, B., Henttonen, P., Ravaja, N.: Review on psychophysiological methods in game research. In: Proc. of 1st Nordic DiGRA

    Google Scholar 

  12. Fairclough, S.: Psychophysiological inference and physiological computer games. In: ACE Workshop-Brainplay, vol. 7 (2007)

    Google Scholar 

  13. Mandryk, R., Atkins, M.: A fuzzy physiological approach for continuously modeling emotion during interaction with play technologies. International Journal of Human-Computer Studies 65(4), 329–347 (2007)

    Article  Google Scholar 

  14. Ravaja, N., Saari, T., Laarni, J., Kallinen, K., Salminen, M., Holopainen, J., Järvinen, A.: The psychophysiology of video gaming: Phasic emotional responses to game events. In: Proceedings of the DiGRA Conference Changing Views: Worlds in play

    Google Scholar 

  15. Rani, P., Sarkar, N., Liu, C.: Maintaining optimal challenge in computer games through real-time physiological feedback. In: Proceedings of the 11th International Conference on Human Computer Interaction, pp. 184–192 (2005)

    Google Scholar 

  16. Nacke, L., Lindley, C.: Flow and immersion in first-person shooters: measuring the player’s gameplay experience. In: Proceedings of the 2008 Conference on Future Play: Research, Play, Share, pp. 81–88. ACM, New York (2008)

    Chapter  Google Scholar 

  17. Picard, R., Vyzas, E., Healey, J.: Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1175–1191 (2001)

    Google Scholar 

  18. Nasoz, F., Alvarez, K., Lisetti, C., Finkelstein, N.: Emotion recognition from physiological signals using wireless sensors for presence technologies. Cognition, Technology & Work 6(1), 4–14 (2004)

    Article  Google Scholar 

  19. McQuiggan, S., Lee, S., Lester, J.: Early prediction of student frustration. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 698–709. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Yannakakis, G.N., Hallam, J., Lund, H.H.: Entertainment capture through heart rate activity in physical interactive playgrounds. User Modeling and User-Adapted Interaction 18(1), 207–243 (2008)

    Article  Google Scholar 

  21. Yannakakis, G.N., Hallam, J.: Entertainment Modeling through Physiology in Physical Play. International Journal of Human-Computer Studies 66, 741–755 (2008)

    Article  Google Scholar 

  22. Tognetti, S., Garbarino, M., Bonanno, A., Matteucci, M., Bonarini, A.: Enjoyment recognition from physiological data in a car racing game. In: Proceedings of the 3rd International Workshop on Affective Interaction in Natural Environments, pp. 3–8. ACM, New York (2010)

    Google Scholar 

  23. Tognetti, S., Garbarino, M., Bonarini, A., Matteucci, M.: Modeling enjoyment preference from physiological responses in a car racing game. In: 2010 IEEE Symposium on Computational Intelligence and Games (CIG), pp. 321–328. IEEE, Los Alamitos (2010)

    Chapter  Google Scholar 

  24. Martínez, H.P., Yannakakis, G.N.: Genetic search feature selection for affective modeling: a case study on reported preferences. In: Proceedings of the 3rd International Workshop on Affective Interaction in Natural Environments, pp. 15–20. ACM, New York (2010)

    Google Scholar 

  25. Fürnkranz, J., Hüllermeier, E.: Preference learning. Künstliche Intelligenz 19(1), 60–61 (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perez Martínez, H., Garbarino, M., Yannakakis, G.N. (2011). Generic Physiological Features as Predictors of Player Experience. In: D’Mello, S., Graesser, A., Schuller, B., Martin, JC. (eds) Affective Computing and Intelligent Interaction. ACII 2011. Lecture Notes in Computer Science, vol 6974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24600-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24600-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24599-2

  • Online ISBN: 978-3-642-24600-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics