Abstract
We propose a new model built on multiscale tree structure, spatially variant mixtures of multiscale autoregressive moving average (SVMMARMA) model, for unsupervised synthetic aperture radar (SAR) imagery segmentation. We derive an expectation maximization (EM) algorithm for learning the pixel labeling as well as the parameters of the component models. We also present the bootstrap sampling technique applied to the parameter estimation, which not only increases estimation precision, but also saves computation time greatly. Finally, we design classifier based on Euclidean distance of multiscale ARMA coefficients. Experiments results show this model gives better results than previous methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Saad, A., El, A.S., Barba, D.: Speckle filtering in SAR images by contrast modification, comparison with a large class of filters. Ann. TelTecommun 51(5–6), 233–244 (1996)
Lee, J.S.: Speckle suppression and analysis for SAR images. Opt. Eng. 25(5), 636–643 (1986)
Fosgate, C., et al.: Multiscale segmentation and anomaly enhancement of SAR imagery. IEEE Trans. Image Process 6(l), 7–20 (1997)
Irving, W., Novak, L., Willsky, A.: A multiresolution approach to discrimination in SAR imagery. IEEE Trans. Aerosp. Electron. Syst. 33(4), 1157–1169 (1997)
Kim, A., Kim, H.: Hierarchical stochastic modeling of SAR imagery for segmentation/compression. IEEE Trans. Signal Process. 47(2), 458–468 (1999)
Wen, X.-B., Tian, Z.: Mixture multiscale autoregressive modelling of SAR imagery for segmentation. Electronics Letters 39(17), 1272–1274 (2003)
Gopal, S.S., Herbert, T.J.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Processing 17(7), 1014–1018 (1998)
Blekas, K., Likas, A., Galatsanos, N.P., Lagaris, I.E.: A spatially constrained mixture model for image segmentation. IEEE Transactions on Neural Networks 16(2), 494–498 (2005)
Zribi, M.: Non-parametric and unsupervised Bayesian classification with Bootstrap sampling. Image and Vision Computing 22(1), 1–8 (2004)
Koch, I., Marshall, G.: Bootstrap coverage plots for image segmentation. In: IEEE-ICPR, pp. 447–451 (1996)
Vijaya, S.V., Murty, M.N.: Bootstrapping for efficient handwritten digit recognition. Pattern Recognition 34, 1047–1056 (2001)
Jain, A.K., Dubes, R.C., Chen, C.C.: Bootstrapping techniques for error estimation. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 9(5), 628–633 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Y., Ju, Y. (2011). Spatially Variant Mixtures of Multiscale ARMA Model for SAR Imagery Segmentation. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds) Artificial Intelligence and Computational Intelligence. AICI 2011. Lecture Notes in Computer Science(), vol 7003. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23887-1_50
Download citation
DOI: https://doi.org/10.1007/978-3-642-23887-1_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23886-4
Online ISBN: 978-3-642-23887-1
eBook Packages: Computer ScienceComputer Science (R0)