iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-23887-1_50
Spatially Variant Mixtures of Multiscale ARMA Model for SAR Imagery Segmentation | SpringerLink
Skip to main content

Spatially Variant Mixtures of Multiscale ARMA Model for SAR Imagery Segmentation

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7003))

  • 2163 Accesses

Abstract

We propose a new model built on multiscale tree structure, spatially variant mixtures of multiscale autoregressive moving average (SVMMARMA) model, for unsupervised synthetic aperture radar (SAR) imagery segmentation. We derive an expectation maximization (EM) algorithm for learning the pixel labeling as well as the parameters of the component models. We also present the bootstrap sampling technique applied to the parameter estimation, which not only increases estimation precision, but also saves computation time greatly. Finally, we design classifier based on Euclidean distance of multiscale ARMA coefficients. Experiments results show this model gives better results than previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Saad, A., El, A.S., Barba, D.: Speckle filtering in SAR images by contrast modification, comparison with a large class of filters. Ann. TelTecommun 51(5–6), 233–244 (1996)

    Google Scholar 

  2. Lee, J.S.: Speckle suppression and analysis for SAR images. Opt. Eng. 25(5), 636–643 (1986)

    Article  Google Scholar 

  3. Fosgate, C., et al.: Multiscale segmentation and anomaly enhancement of SAR imagery. IEEE Trans. Image Process 6(l), 7–20 (1997)

    Article  Google Scholar 

  4. Irving, W., Novak, L., Willsky, A.: A multiresolution approach to discrimination in SAR imagery. IEEE Trans. Aerosp. Electron. Syst. 33(4), 1157–1169 (1997)

    Article  Google Scholar 

  5. Kim, A., Kim, H.: Hierarchical stochastic modeling of SAR imagery for segmentation/compression. IEEE Trans. Signal Process. 47(2), 458–468 (1999)

    Article  MathSciNet  Google Scholar 

  6. Wen, X.-B., Tian, Z.: Mixture multiscale autoregressive modelling of SAR imagery for segmentation. Electronics Letters 39(17), 1272–1274 (2003)

    Article  Google Scholar 

  7. Gopal, S.S., Herbert, T.J.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Processing 17(7), 1014–1018 (1998)

    Article  Google Scholar 

  8. Blekas, K., Likas, A., Galatsanos, N.P., Lagaris, I.E.: A spatially constrained mixture model for image segmentation. IEEE Transactions on Neural Networks 16(2), 494–498 (2005)

    Article  Google Scholar 

  9. Zribi, M.: Non-parametric and unsupervised Bayesian classification with Bootstrap sampling. Image and Vision Computing 22(1), 1–8 (2004)

    Article  Google Scholar 

  10. Koch, I., Marshall, G.: Bootstrap coverage plots for image segmentation. In: IEEE-ICPR, pp. 447–451 (1996)

    Google Scholar 

  11. Vijaya, S.V., Murty, M.N.: Bootstrapping for efficient handwritten digit recognition. Pattern Recognition 34, 1047–1056 (2001)

    Article  MATH  Google Scholar 

  12. Jain, A.K., Dubes, R.C., Chen, C.C.: Bootstrapping techniques for error estimation. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 9(5), 628–633 (1987)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Y., Ju, Y. (2011). Spatially Variant Mixtures of Multiscale ARMA Model for SAR Imagery Segmentation. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds) Artificial Intelligence and Computational Intelligence. AICI 2011. Lecture Notes in Computer Science(), vol 7003. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23887-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23887-1_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23886-4

  • Online ISBN: 978-3-642-23887-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics