Abstract
Time series data objects can be interpreted as high- dimensional vectors, which allows the application of many traditional distance measures as well as more specialized measures. However, many distance functions are known to suffer from poor contrast in high-dimensional settings, putting their usefulness as similarity measures into question. On the other hand, shared-nearest-neighbor distances based on the ranking of data objects induced by some primary distance measure have been known to lead to improved performance in high-dimensional settings. In this paper, we study the performance of shared-neighbor similarity measures in the context of similarity search for time series data objects. Our findings are that the use of shared-neighbor similarity measures generally results in more stable performances than that of their associated primary distance measures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berndt, D., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop (1994)
Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proc. ICDE (2002)
Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proc. SIGMOD (2005)
Chen, L., Ng, R.: On the marriage of Lp-norms and edit distance. In: Proc. VLDB (2004)
Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730. Springer, Heidelberg (1993)
Yi, B.K., Jagadish, H., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In: Proc. VLDB (2000)
Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE TC 23(1), 90–93 (1974)
Chan, K.P., Fu, A.W.C.: Efficient time series matching by wavelets. In: Proc. ICDE, pp. 126–133 (1999)
Cai, Y., Ng, R.: Index spatio-temporal trajectories with Chebyshev polynomials. In: Proc. SIGMOD (2004)
Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. IEEE TKDD 3(1), 1–58 (2009)
Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neighbors. IEEE TC C-22(11), 1025–1034 (1973)
Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Proc. SDM (2003)
Houle, M.E.: The relevant-set correlation model for data clustering. Stat. Anal. Data Min. 1(3), 157–176 (2008)
Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Outlier detection in axis-parallel subspaces of high dimensional data. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 831–838. Springer, Heidelberg (2009)
Houle, M.E., Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Can shared-neighbor distances defeat the curse of dimensionality? In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 482–500. Springer, Heidelberg (2010)
Houle, M.E.: Navigating massive data sets via local clustering. In: Proc. KDD (2003)
Achtert, E., Bernecker, T., Kriegel, H.P., Schubert, E., Zimek, A.: ELKI in time: ELKI 0.2 for the performance evaluation of distance measures for time series. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 436–440. Springer, Heidelberg (2009)
Keogh, E., Xi, X., Wei, L., Ratanamahatana, C.A.: The UCR time series classification/clustering homepage (2006), http://www.cs.ucr.edu/~eamonn/time_series_data/
Saito, N.: Local feature extraction and its application using a library of bases. PhD thesis, Yale University (1994)
Pham, D.T., Chan, A.B.: Control chart pattern recognition using a new type of self-organizing neural network. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 212(2), 115–127 (1998)
Gandhi, A.: Content-based image retrieval: Plant species identification. Master’s thesis, Oregon State University (2002)
Davis, S., Jacobson, A., Suszcynsky, D., Cai, M., Eads, D.: FORTE forte time series dataset (2005), http://nis-www.lanl.gov/~eads/datasets/forte
Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)
Hinneburg, A., Aggarwal, C.C., Keim, D.A.: What is the nearest neighbor in high dimensional spaces? In: Proc. VLDB (2000)
Aggarwal, C.C., Hinneburg, A., Keim, D.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, p. 420. Springer, Heidelberg (2000)
Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally adaptive dimensionality reduction for indexing large time series databases. ACM TODS 27(2), 188–228 (2002)
Verleysen, M., François, D.: The curse of dimensionality in data mining and time series prediction. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 758–770. Springer, Heidelberg (2005)
Radovanovic, M., Nanopoulos, A., Ivanovic, M.: Time-series classification in many intrinsic dimensions. In: Proc. SDM (2010)
Radovanovic, M., Nanopoulos, A., Ivanovic, M.: Hubs in space: Popular nearest neighbors in high-dimensional data. J. Mach. Learn. Res. 11, 2487–2531 (2010)
Bennett, K.P., Fayyad, U., Geiger, D.: Density-based indexing for approximate nearest-neighbor queries. In: Proc. KDD (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bernecker, T. et al. (2011). Quality of Similarity Rankings in Time Series. In: Pfoser, D., et al. Advances in Spatial and Temporal Databases. SSTD 2011. Lecture Notes in Computer Science, vol 6849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22922-0_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-22922-0_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22921-3
Online ISBN: 978-3-642-22922-0
eBook Packages: Computer ScienceComputer Science (R0)