Abstract
This paper addresses the automatic recognition of temporal expressions and events in Chinese. For this language, these tasks are still in a exploratory stage and high-performance approaches are needed. Recently, in TempEval-2 evaluation exercise, corpora annotated in TimeML were released for different languages including Chinese. However, no systems were evaluated in this language. We present a data-driven approach for addressing these tasks in Chinese, TIRSemZH. This uses semantic roles, in addition to morphosyntactic information, as feature. The performance achieved by TIRSemZH over the TempEval-2 Chinese data (85% F1) is comparable to the state of the art for other languages. Therefore, the method can be used to develop high-performance temporal processing systems, which are currently not available for Chinese. Furthermore, the results obtained verify that when semantic roles are applied, the performance of a baseline based only on morphosyntax is improved. This supports and extends the conclusions reached by related works for other languages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Che, W., Li, Z., Li, Y., Guo, Y., Qin, B., Liu, T.: Multilingual dependency-based syntactic and semantic parsing. In: Proceedings of the 13th Conference on Computational Natural Language Learning: Shared Task, CoNLL 2009, pp. 49–54. ACL (2009)
Che, W., Li, Z., Liu, T.: Ltp: A chinese language technology platform. In: Coling 2010: Demonstrations, Beijing, China, pp. 13–16 (2010)
Fellbaum, C.: WordNet: An Electronic Lexical Database (Language, Speech, and Communication). MIT Press, Cambridge (1998)
Grover, C., Tobin, R., Alex, B., Byrne, K.: Edinburgh-ltg: Tempeval-2 system description. In: Proceedings of SemEval-5, pp. 333–336. ACL (2010)
Hacioglu, K., Chen, Y., Douglas, B.: Automatic time expression labeling for english and chinese text. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 548–559. Springer, Heidelberg (2005)
Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 18th ICML, pp. 282–289. Morgan Kaufmann, San Francisco (2001)
Li, W., Wong, K.-F., Cao, G., Yuan, C.: Applying machine learning to chinese temporal relation resolution. In: Proceedings of the 42nd Meeting of the ACL (ACL 2004), Barcelona, Spain, Main Volume, pp. 582–588 (2004)
Li, W., Wong, K.F., Yuan, C.: A model for processing temporal references in chinese. In: Workshop on Temporal and Spatial Information Processing, pp. 33–40. ACL (2001)
Llorens, H., Saquete, E., Navarro, B.: TIPSem (English and Spanish): Evaluating CRFs and Semantic Roles in TempEval-2. In: Proceedings of SemEval-5, pp. 284–291. ACL (2010)
Pustejovsky, J., Castaño, J.M., Ingria, R., SaurÃ, R., Gaizauskas, R., Setzer, A., Katz, G.: TimeML: Robust Specification of Event and Timexes in Text. In: IWCS-5 (2003)
Silberztein, M.: An alternative approach to tagging. In: Kedad, Z., Lammari, N., Métais, E., Meziane, F., Rezgui, Y. (eds.) NLDB 2007. LNCS, vol. 4592, pp. 1–11. Springer, Heidelberg (2007)
Strötgen, J., Gertz, M.: Heideltime: High quality rule-based extraction and normalization of temporal expressions. In: Proceedings of SemEval-5, pp. 321–324. ACL (2010)
UzZaman, N., Allen, J.F.: Trips and trios system for tempeval-2: Extracting temporal information from text. In: Proceedings of SemEval-5, pp. 276–283. ACL (2010)
Verhagen, M., SaurÃ, R., Caselli, T., Pustejovsky, J.: Semeval-2010 task 13: Tempeval-2. In: Proceedings of SemEval-5, pp. 57–62. ACL (2010)
Xue, N.: Labeling chinese predicates with semantic roles. Computational Linguistics 34(2), 225–255 (2008)
Xue, N., Zhou, Y.: Applying syntactic, semantic and discourse constraints in chinese temporal annotation. In: Coling 2010: Posters, Beijing, China, pp. 1363–1372 (2010)
You, L., Liu, K.: Building chinese framenet database. In: Proceedings of IEEE International Conference on Natural Language Processing and Knowledge Engineering (NLP-KE 2005), pp. 301–306 (2005)
Zhang, C., Cao, C.G., Niu, Z., Yang, Q.: A transformation-based error-driven learning approach for chinese temporal information extraction. In: Li, H., Liu, T., Ma, W.-Y., Sakai, T., Wong, K.-F., Zhou, G. (eds.) AIRS 2008. LNCS, vol. 4993, pp. 663–669. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Llorens, H., Saquete, E., Navarro, B., Li, L., He, Z. (2011). Data-Driven Approach Based on Semantic Roles for Recognizing Temporal Expressions and Events in Chinese. In: Muñoz, R., Montoyo, A., Métais, E. (eds) Natural Language Processing and Information Systems. NLDB 2011. Lecture Notes in Computer Science, vol 6716. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22327-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-22327-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22326-6
Online ISBN: 978-3-642-22327-3
eBook Packages: Computer ScienceComputer Science (R0)