Abstract
We present an approach for segmenting left ventricular endocardial boundaries from RF ultrasound. Segmentation is achieved jointly using an independent identically distributed (i.i.d.) spatial model for RF intensity and a multiframe conditional model. The conditional model relates neighboring frames in the image sequence by means of a computationally efficient linear predictor that exploits spatio-temporal coherence in the data. Segmentation using the RF data overcomes problems due to image inhomogeneities often amplified in B-mode segmentation and provides geometric constraints for RF phase-based speckle tracking. The incorporation of multiple frames in the conditional model significantly increases the robustness and accuracy of the algorithm. Results are generated using between 2 and 5 frames of RF data for each segmentation and are validated by comparison with manual tracings and automated B-mode boundary detection using standard (Chan and Vese-based) level sets on echocardiographic images from 27 3D sequences acquired from 6 canine studies.
This work is supported by grants 5R01HL082640-04 and 5R01HL077810-04.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. on Imag. Proc. 10(2), 266–277 (2001)
Dydenko, I., Friboulet, D., Gorce, J.M., D’hooge, J., Bijnens, B., Magnin, I.E.: Towards ultrasound cardiac image segmentation based on the radiofrequency signal. Med. Imag. Anal. 7(3), 353–367 (2003)
Langton, C.: Hilbert transform, analytic signal, and the complex envelope. Sig. Proc. and Sim News (1999)
Lubinski, M.A., Emelianov, S.Y., O’Donnell, M.: Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation. IEEE Trans. Ultra Ferro Freq. Cont. 46(1), 82–96 (1999), http://dx.doi.org/10.1109/58.741427
Nillesen, M.M., Lopata, R.G.P., Huisman, H.J., Thijssen, J.M., Kapusta, L., de Korte, C.L.: 3D cardiac segmentation using temporal correlation of radio frequency ultrasound data. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 927–934. Springer, Heidelberg (2009)
Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. on Med. Imag. 25(8), 987–1010 (2006)
Pearlman, P.C., Tagare, H.D., Sinusas, A.J., Duncan, J.S.: 3D radio frequency ultrasound cardiac segmentation using a linear predictor. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 502–509. Springer, Heidelberg (2010)
Qian, X., Tagare, H.D.: Overcoming dropout while segmenting cardiac ultrasound images. In: Proc. ISBI, pp. 105–108 (2006)
Shung, K.K., Thieme, G.A.: Ultrasonic scattering in biological tissues. CRC Press, Boca Raton (1993)
Tao, Z., Tagare, H.D., Beaty, J.D.: Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images. IEEE Transactions on Medical Imaging 25(11), 1483–1491 (2006)
Yan, P., Jia, C.X., Sinusas, A., Thiele, K., O’Donnell, M., Duncan, J.S.: Lv segmentation through the analysis of radio frequency ultrasonic images. Proc. IPMI 20, 233–244 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pearlman, P.C., Tagare, H.D., Lin, B.A., Sinusas, A.J., Duncan, J.S. (2011). Segmentation of 3D RF Echocardiography Using a Multiframe Spatio-temporal Predictor. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-22092-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22091-3
Online ISBN: 978-3-642-22092-0
eBook Packages: Computer ScienceComputer Science (R0)