Abstract
In comparative genomics, a transposition is an operation that exchanges two consecutive sequences of genes in a genome. The transposition distance, that is, the minimum number of transpositions needed to transform a genome into another, can be considered as a relevant evolutionary distance. The problem of computing this distance when genomes are represented by permutations, called the Sorting by Transpositions problem (SBT), has been introduced by Bafna and Pevzner [3] in 1995. It has naturally been the focus of a number of studies, but the computational complexity of this problem has remained undetermined for 15 years.
In this paper, we answer this long-standing open question by proving that the Sorting by Transpositions problem is NP-hard. As a corollary of our result, we also prove that the following problem from [10] is NP-hard: given a permutation π, is it possible to sort π using d b (π)/3 permutations, where d b (π) is the number of breakpoints of π?
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat, E., Skiena, S., Vishne, U.: Pattern matching with address errors: Rearrangement distances. J. Comput. Syst. Sci. 75(6), 359–370 (2009)
Amir, A., Aumann, Y., Indyk, P., Levy, A., Porat, E.: Efficient computations of ℓ1 and ℓ?8? rearrangement distances. In: Ziviani, N., Baeza-Yates, R.A. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 39–49. Springer, Heidelberg (2007)
Bafna, V., Pevzner, P.A.: Sorting permutations by transpositions. In: SODA, pp. 614–623 (1995)
Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discrete Math. 11(2), 224–240 (1998)
Benoît-Gagné, M., Hamel, S.: A new and faster method of sorting by transpositions. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 131–141. Springer, Heidelberg (2007)
Bongartz, D.: Algorithmic Aspects of Some Combinatorial Problems in Bioinformatics. PhD thesis, RWTH Aachen University, Germany (2006)
Bulteau, L., Fertin, G., Rusu, I.: Sorting by Transpositions is Difficult. CoRR abs/1011.1157 (2010)
Chitturi, B., Sudborough, I.H.: Bounding prefix transposition distance for strings and permutations. In: HICSS, p. 468. IEEE Computer Society, Los Alamitos (2008)
Christie, D.A.: Sorting permutations by block-interchanges. Inf. Process. Lett. 60(4), 165–169 (1996)
Christie, D.A.: Genome Rearrangement Problems. PhD thesis, University of Glasgow, Scotland (1998)
Christie, D.A., Irving, R.W.: Sorting strings by reversals and by transpositions. SIAM J. Discrete Math. 14(2), 193–206 (2001)
Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. In: SODA, pp. 667–676 (2002)
Dias, Z., Meidanis, J.: Sorting by prefix transpositions. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 65–76. Springer, Heidelberg (2002)
Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transpositions. IEEE/ACM Trans. Comput. Biology Bioinform. 3(4), 369–379 (2006)
Eriksson, H., Eriksson, K., Karlander, J., Svensson, L.J., Wästlund, J.: Sorting a bridge hand. Discrete Mathematics 241(1-3), 289–300 (2001)
Feng, J., Zhu, D.: Faster algorithms for sorting by transpositions and sorting by block interchanges. ACM Transactions on Algorithms 3(3) (2007)
Fertin, G., Labarre, A., Rusu, I., Tannier, É., Vialette, S.: Combinatorics of genome rearrangements. The MIT Press, Cambridge (2009)
Gu, Q.-P., Peng, S., Chen, Q.M.: Sorting permutations and its applications in genome analysis. Lectures on Mathematics in the Life Science, vol. 26, pp. 191–201 (1999)
Guyer, S.A., Heath, L.S., Vergara, J.P.: Subsequence and run heuristics for sorting by transpositions. Technical report, Virginia State University (1997)
Hartman, T., Shamir, R.: A simpler and faster 1.5-approximation algorithm for sorting by transpositions. Inf. Comput. 204(2), 275–290 (2006)
Kolman, P., Waleń, T.: Reversal distance for strings with duplicates: Linear time approximation using hitting set. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 279–289. Springer, Heidelberg (2007)
Labarre, A.: New bounds and tractable instances for the transposition distance. IEEE/ACM Trans. Comput. Biology Bioinform. 3(4), 380–394 (2006)
Labarre, A.: Edit distances and factorisations of even permutations. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 635–646. Springer, Heidelberg (2008)
Qi, X.-Q.: Combinatorial Algorithms of Genome Rearrangements in Bioinformatics. PhD thesis, University of Shandong, China (2006)
Radcliffe, A.J., Scott, A.D., Wilmer, A.L.: Reversals and transpositions over finite alphabets. SIAM J. Discret. Math. 19, 224–244 (2005)
Shapira, D., Storer, J.A.: Edit distance with move operations. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 85–98. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bulteau, L., Fertin, G., Rusu, I. (2011). Sorting by Transpositions Is Difficult. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_55
Download citation
DOI: https://doi.org/10.1007/978-3-642-22006-7_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22005-0
Online ISBN: 978-3-642-22006-7
eBook Packages: Computer ScienceComputer Science (R0)