iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-22006-7_55
Sorting by Transpositions Is Difficult | SpringerLink
Skip to main content

Sorting by Transpositions Is Difficult

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Included in the following conference series:

Abstract

In comparative genomics, a transposition is an operation that exchanges two consecutive sequences of genes in a genome. The transposition distance, that is, the minimum number of transpositions needed to transform a genome into another, can be considered as a relevant evolutionary distance. The problem of computing this distance when genomes are represented by permutations, called the Sorting by Transpositions problem (SBT), has been introduced by Bafna and Pevzner [3] in 1995. It has naturally been the focus of a number of studies, but the computational complexity of this problem has remained undetermined for 15 years.

In this paper, we answer this long-standing open question by proving that the Sorting by Transpositions problem is NP-hard. As a corollary of our result, we also prove that the following problem from [10] is NP-hard: given a permutation π, is it possible to sort π using d b (π)/3 permutations, where d b (π) is the number of breakpoints of π?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat, E., Skiena, S., Vishne, U.: Pattern matching with address errors: Rearrangement distances. J. Comput. Syst. Sci. 75(6), 359–370 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amir, A., Aumann, Y., Indyk, P., Levy, A., Porat, E.: Efficient computations of ℓ1 and ℓ?8? rearrangement distances. In: Ziviani, N., Baeza-Yates, R.A. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 39–49. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Bafna, V., Pevzner, P.A.: Sorting permutations by transpositions. In: SODA, pp. 614–623 (1995)

    Google Scholar 

  4. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discrete Math. 11(2), 224–240 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benoît-Gagné, M., Hamel, S.: A new and faster method of sorting by transpositions. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 131–141. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Bongartz, D.: Algorithmic Aspects of Some Combinatorial Problems in Bioinformatics. PhD thesis, RWTH Aachen University, Germany (2006)

    Google Scholar 

  7. Bulteau, L., Fertin, G., Rusu, I.: Sorting by Transpositions is Difficult. CoRR abs/1011.1157 (2010)

    Google Scholar 

  8. Chitturi, B., Sudborough, I.H.: Bounding prefix transposition distance for strings and permutations. In: HICSS, p. 468. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  9. Christie, D.A.: Sorting permutations by block-interchanges. Inf. Process. Lett. 60(4), 165–169 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christie, D.A.: Genome Rearrangement Problems. PhD thesis, University of Glasgow, Scotland (1998)

    Google Scholar 

  11. Christie, D.A., Irving, R.W.: Sorting strings by reversals and by transpositions. SIAM J. Discrete Math. 14(2), 193–206 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. In: SODA, pp. 667–676 (2002)

    Google Scholar 

  13. Dias, Z., Meidanis, J.: Sorting by prefix transpositions. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 65–76. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transpositions. IEEE/ACM Trans. Comput. Biology Bioinform. 3(4), 369–379 (2006)

    Article  Google Scholar 

  15. Eriksson, H., Eriksson, K., Karlander, J., Svensson, L.J., Wästlund, J.: Sorting a bridge hand. Discrete Mathematics 241(1-3), 289–300 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng, J., Zhu, D.: Faster algorithms for sorting by transpositions and sorting by block interchanges. ACM Transactions on Algorithms 3(3) (2007)

    Google Scholar 

  17. Fertin, G., Labarre, A., Rusu, I., Tannier, É., Vialette, S.: Combinatorics of genome rearrangements. The MIT Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  18. Gu, Q.-P., Peng, S., Chen, Q.M.: Sorting permutations and its applications in genome analysis. Lectures on Mathematics in the Life Science, vol. 26, pp. 191–201 (1999)

    Google Scholar 

  19. Guyer, S.A., Heath, L.S., Vergara, J.P.: Subsequence and run heuristics for sorting by transpositions. Technical report, Virginia State University (1997)

    Google Scholar 

  20. Hartman, T., Shamir, R.: A simpler and faster 1.5-approximation algorithm for sorting by transpositions. Inf. Comput. 204(2), 275–290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kolman, P., Waleń, T.: Reversal distance for strings with duplicates: Linear time approximation using hitting set. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 279–289. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Labarre, A.: New bounds and tractable instances for the transposition distance. IEEE/ACM Trans. Comput. Biology Bioinform. 3(4), 380–394 (2006)

    Article  Google Scholar 

  23. Labarre, A.: Edit distances and factorisations of even permutations. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 635–646. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Qi, X.-Q.: Combinatorial Algorithms of Genome Rearrangements in Bioinformatics. PhD thesis, University of Shandong, China (2006)

    Google Scholar 

  25. Radcliffe, A.J., Scott, A.D., Wilmer, A.L.: Reversals and transpositions over finite alphabets. SIAM J. Discret. Math. 19, 224–244 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shapira, D., Storer, J.A.: Edit distance with move operations. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 85–98. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bulteau, L., Fertin, G., Rusu, I. (2011). Sorting by Transpositions Is Difficult. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics