iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-21875-0_32
Conservative Extensions of Abstract Structures | SpringerLink
Skip to main content

Conservative Extensions of Abstract Structures

  • Conference paper
Models of Computation in Context (CiE 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6735))

Included in the following conference series:

Abstract

In the present paper we investigate a relation, called conservative extension, between abstract structures \(\mathfrak{A}\) and \(\mathfrak{B}\), possibly with different signatures and \(\vert\mathfrak{A}\vert\subseteq \vert\mathfrak{B}\vert\). We give a characterisation of this relation in terms of computable Σ n formulae and we show that in some sense it provides a finer complexity measure than the one given by degree spectra of structures. As an application, we show that the n-th jump of a structure and its Marker’s extension are conservative extensions of the original structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ash, C., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy. Elsevier Science, Amsterdam (2000)

    MATH  Google Scholar 

  2. Ash, C., Knight, J., Manasse, M., Slaman, T.: Generic Copies of Countable Structures. Annals of Pure and Applied Logic 42, 195–205 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chisholm, J.: Effective Model Theory vs. Recursive Model Theory. The Journal of Symbolic Logic 55(3), 1168–1191 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Goncharov, S.S., Khoussainov, B.: Complexity of categorical theories with computable models. Algebra and Logic 43(6), 365–373 (2004)

    Article  MathSciNet  Google Scholar 

  5. Marker, D.: Non Σ n Axiomatizable Almost Strongly Minimal Theories. The Journal of Symbolic Logic 54, 921–927 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Moschovakis, Y.: Elementary Induction on Abstract Structures. North - Holland, Amsterdam (1974)

    MATH  Google Scholar 

  7. Richter, L.: Degrees of Structures. The Journal of Symbolic Logic 46(4), 723–731 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Soskova, A., Soskov, I.: A Jump Inversion Theorem for the Degree Spectra. Journal of Logic and Computation 19, 199–215 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Soskov, I.: Degree Spectra and Co-spectra of structures. Ann, Univ. Sofia 96, 45–68 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Stukachev, A.: A Jump Inversion Theorem for the Semilattices of Sigma-degrees. Siberian Advances in Mathematics 20(1), 68–74 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vatev, S. (2011). Conservative Extensions of Abstract Structures. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds) Models of Computation in Context. CiE 2011. Lecture Notes in Computer Science, vol 6735. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21875-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21875-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21874-3

  • Online ISBN: 978-3-642-21875-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics