iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-21875-0_31
A New Optimum-Time Firing Squad Synchronization Algorithm for Two-Dimensional Rectangle Arrays: One-Sided Recursive Halving Based | SpringerLink
Skip to main content

A New Optimum-Time Firing Squad Synchronization Algorithm for Two-Dimensional Rectangle Arrays: One-Sided Recursive Halving Based

  • Conference paper
Models of Computation in Context (CiE 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6735))

Included in the following conference series:

Abstract

The firing squad synchronization problem on cellular automata has been studied extensively for more than fifty years, and a rich variety of synchronization algorithms have been proposed for not only one-dimensional arrays but two-dimensional arrays. In the present paper, we propose a new optimum-time synchronization algorithm that can synchronize any two-dimensional rectangle arrays of size m ×n with a general at one corner in m + n + max (m, n) − 3 steps. The algorithm is based on a simple recursive halving marking schema which helps synchronization operations on two-dimensional arrays. A proposed computer-assisted implementation of the algorithm gives a description of a two-dimensional cellular automaton in terms of a finite 384-state set and a local 112690-rule set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balzer, R.: An 8-state minimal time solution to the firing squad synchronization problem. Information and Control 10, 22–42 (1967)

    Article  MATH  Google Scholar 

  2. Beyer, W.T.: Recognition of topological invariants by iterative arrays. Ph.D. Thesis, MIT, pp. 144 (September 1969)

    Google Scholar 

  3. Gerken, H.D.: Über Synchronisationsprobleme bei Zellularautomaten. Diplomarbeit, Institut für Theoretische Informatik, Technische Universität Braunschweig, pp. 50 (1987)

    Google Scholar 

  4. Goto, E.: A minimal time solution of the firing squad problem. In: Dittoed course notes for Applied Mathematics, vol. 298, pp. 52–59. Harvard University, Cambridge (1962)

    Google Scholar 

  5. Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization problem. Theoretical Computer Science 50, 183–238 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Moore, E.F.: The firing squad synchronization problem. In: Moore, E.F. (ed.) Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Reading (1964)

    Google Scholar 

  7. Schmid, H.: Synchronisationsprobleme für zelluläre Automaten mit mehreren Generälen. Diplomarbeit, Universität Karsruhe (2003)

    Google Scholar 

  8. Shinahr, I.: Two- and three-dimensional firing squad synchronization problems. Information and Control 24, 163–180 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Szwerinski, H.: Time-optimum solution of the firing-squad-synchronizationproblem for n-dimensional rectangles with the general at an arbitrary position. Theoretical Computer Science 19, 305–320 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Umeo, H.: A simple design of time-efficient firing squad synchronization algorithms with fault-tolerance. IEICE Trans. on Information and Systems E87-D(3), 733–739 (2004)

    Google Scholar 

  11. Umeo, H.: Firing squad synchronization problem in cellular automata. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 4, pp. 3537–3574. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Umeo, H., Hisaoka, M., Akiguchi, S.: A twelve-state optimum-time synchronization algorithm for two-dimensional rectangular cellular arrays. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 214–223. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Umeo, H., Hisaoka, M., Sogabe, T.: A survey on optimum-time firing squad synchronization algorithms for one-dimensional cellular automata. Intern. J. of Unconventional Computing 1, 403–426 (2005)

    MATH  Google Scholar 

  14. Umeo, H., Hisaoka, M., Teraoka, M., Maeda, M.: Several new generalized linear- and optimum-time synchronization algorithms for two-dimensional rectangular arrays. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 223–232. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Umeo, H., Maeda, M., Hisaoka, M., Teraoka, M.: A state-efficient mapping scheme for designing two-dimensional firing squad synchronization algorithms. Fundamenta Informaticae 74, 603–623 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Umeo, H., Uchino, H.: A new time-optimum synchronization algorithm for rectangle arrays. Fundamenta Informaticae 87(2), 155–164 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Umeo, H., Yamawaki, T., Nishide, K.: An optimum-time firing squad synchronization algorithm for two-dimensional rectangle arrays—freezing-thawing technique based. In: Proceedings of the 2010 International Conference on High Performance Computing & Simulation (HPCS 2010), pp. 575–581 (2010)

    Google Scholar 

  18. Waksman, A.: An optimum solution to the firing squad synchronization problem. Information and Control 9, 66–78 (1966)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Umeo, H., Nishide, K., Yamawaki, T. (2011). A New Optimum-Time Firing Squad Synchronization Algorithm for Two-Dimensional Rectangle Arrays: One-Sided Recursive Halving Based. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds) Models of Computation in Context. CiE 2011. Lecture Notes in Computer Science, vol 6735. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21875-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21875-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21874-3

  • Online ISBN: 978-3-642-21875-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics