Abstract
The firing squad synchronization problem on cellular automata has been studied extensively for more than fifty years, and a rich variety of synchronization algorithms have been proposed for not only one-dimensional arrays but two-dimensional arrays. In the present paper, we propose a new optimum-time synchronization algorithm that can synchronize any two-dimensional rectangle arrays of size m ×n with a general at one corner in m + n + max (m, n) − 3 steps. The algorithm is based on a simple recursive halving marking schema which helps synchronization operations on two-dimensional arrays. A proposed computer-assisted implementation of the algorithm gives a description of a two-dimensional cellular automaton in terms of a finite 384-state set and a local 112690-rule set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balzer, R.: An 8-state minimal time solution to the firing squad synchronization problem. Information and Control 10, 22–42 (1967)
Beyer, W.T.: Recognition of topological invariants by iterative arrays. Ph.D. Thesis, MIT, pp. 144 (September 1969)
Gerken, H.D.: Über Synchronisationsprobleme bei Zellularautomaten. Diplomarbeit, Institut für Theoretische Informatik, Technische Universität Braunschweig, pp. 50 (1987)
Goto, E.: A minimal time solution of the firing squad problem. In: Dittoed course notes for Applied Mathematics, vol. 298, pp. 52–59. Harvard University, Cambridge (1962)
Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization problem. Theoretical Computer Science 50, 183–238 (1987)
Moore, E.F.: The firing squad synchronization problem. In: Moore, E.F. (ed.) Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Reading (1964)
Schmid, H.: Synchronisationsprobleme für zelluläre Automaten mit mehreren Generälen. Diplomarbeit, Universität Karsruhe (2003)
Shinahr, I.: Two- and three-dimensional firing squad synchronization problems. Information and Control 24, 163–180 (1974)
Szwerinski, H.: Time-optimum solution of the firing-squad-synchronizationproblem for n-dimensional rectangles with the general at an arbitrary position. Theoretical Computer Science 19, 305–320 (1982)
Umeo, H.: A simple design of time-efficient firing squad synchronization algorithms with fault-tolerance. IEICE Trans. on Information and Systems E87-D(3), 733–739 (2004)
Umeo, H.: Firing squad synchronization problem in cellular automata. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 4, pp. 3537–3574. Springer, Heidelberg (2009)
Umeo, H., Hisaoka, M., Akiguchi, S.: A twelve-state optimum-time synchronization algorithm for two-dimensional rectangular cellular arrays. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 214–223. Springer, Heidelberg (2005)
Umeo, H., Hisaoka, M., Sogabe, T.: A survey on optimum-time firing squad synchronization algorithms for one-dimensional cellular automata. Intern. J. of Unconventional Computing 1, 403–426 (2005)
Umeo, H., Hisaoka, M., Teraoka, M., Maeda, M.: Several new generalized linear- and optimum-time synchronization algorithms for two-dimensional rectangular arrays. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 223–232. Springer, Heidelberg (2005)
Umeo, H., Maeda, M., Hisaoka, M., Teraoka, M.: A state-efficient mapping scheme for designing two-dimensional firing squad synchronization algorithms. Fundamenta Informaticae 74, 603–623 (2006)
Umeo, H., Uchino, H.: A new time-optimum synchronization algorithm for rectangle arrays. Fundamenta Informaticae 87(2), 155–164 (2008)
Umeo, H., Yamawaki, T., Nishide, K.: An optimum-time firing squad synchronization algorithm for two-dimensional rectangle arrays—freezing-thawing technique based. In: Proceedings of the 2010 International Conference on High Performance Computing & Simulation (HPCS 2010), pp. 575–581 (2010)
Waksman, A.: An optimum solution to the firing squad synchronization problem. Information and Control 9, 66–78 (1966)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Umeo, H., Nishide, K., Yamawaki, T. (2011). A New Optimum-Time Firing Squad Synchronization Algorithm for Two-Dimensional Rectangle Arrays: One-Sided Recursive Halving Based. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds) Models of Computation in Context. CiE 2011. Lecture Notes in Computer Science, vol 6735. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21875-0_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-21875-0_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21874-3
Online ISBN: 978-3-642-21875-0
eBook Packages: Computer ScienceComputer Science (R0)