iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-21875-0_13
Randomness and the Ergodic Decomposition | SpringerLink
Skip to main content

Randomness and the Ergodic Decomposition

  • Conference paper
Models of Computation in Context (CiE 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6735))

Included in the following conference series:

Abstract

The interaction between algorithmic randomness and ergodic theory is a rich field of investigation. In this paper we study the particular case of the ergodic decomposition. We give several positive partial answers, leaving the general problem open. We shortly illustrate how the effectivity of the ergodic decomposition allows one to easily extend results from the ergodic case to the non-ergodic one (namely Poincaré recurrence theorem). We also show that in some cases the ergodic measures can be computed from the typical realizations of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bienvenu, L., Day, A., Mezhirov, I., Shen, A.: Ergodic-type characterizations of algorithmic randomness. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 49–58. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Freer, C.E., Roy, D.M.: Computable exchangeable sequences have computable de finetti measures. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 218–231. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Gács, P.: Uniform test of algorithmic randomness over a general space. Theoretical Computer Science 341, 91–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gács, P.: Lecture notes on descriptional complexity and randomness. Tech. rep., Boston University (2008)

    Google Scholar 

  5. Hertling, P., Weihrauch, K.: Random elements in effective topological spaces with measure. Information and Computation 181(1), 32–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hoyrup, M., Rojas, C.: Applications of effective probability theory to martin-löf randomness. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 549–561. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Hoyrup, M., Rojas, C.: Computability of probability measures and Martin-Löf randomness over metric spaces. Inf. Comput. 207(7), 830–847 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Levin, L.A.: On the notion of a random sequence. Soviet Mathematics Doklady 14, 1413–1416 (1973)

    MATH  Google Scholar 

  9. Martin-Löf, P.: The definition of random sequences. Information and Control 9(6), 602–619 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nandakumar, S.: An effective ergodic theorem and some applications. In: STOC 2008: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 39–44. ACM, New York (2008)

    Google Scholar 

  11. Phelps, R.R.: Lectures on Choquet’s Theorem, 2nd edn. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  12. V’yugin, V.V.: Ergodic theorems for individual random sequences. Theoretical Computer Science 207(4), 343–361 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoyrup, M. (2011). Randomness and the Ergodic Decomposition. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds) Models of Computation in Context. CiE 2011. Lecture Notes in Computer Science, vol 6735. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21875-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21875-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21874-3

  • Online ISBN: 978-3-642-21875-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics