Abstract
Reducing energy consumption is an increasingly important issue in computing and embedded systems. In computing systems, minimizing energy consumption can significantly reduce the amount of energy bills. The demand for computing systems steadily increases and the cost of energy continues to rise. In embedded systems, reducing the use of energy allows to extend the autonomy of these systems. In addition, the reduction of energy decreases greenhouse gas emissions. Therefore, many researches are carried out to develop new methods in order to consume less energy. This chapter gives an overview of the main methods used to reduce the energy consumption in computing and embedded systems. As a use case and to give an example of a method, the chapter describes our new parallel bi-objective hybrid genetic algorithm that takes into account the completion time and the energy consumption. In terms of energy consumption, the obtained results show that our approach outperforms previous scheduling methods by a significant margin. In terms of completion time, the obtained schedules are also shorter than those of other algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berl, A., de Meer, H.: A virtualized energy-efficient office environment. In: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking, e-Energy 2010, pp. 11–20. ACM, New York (2010)
Bozdag, D., Catalyurek, U., Ozguner, F.: A task duplication based bottom-up scheduling algorithm for heterogeneous environments. In: Proc. Int. Parallel and Distributed Processing Symp. (2005)
Cohoon, J.P., Hedge, S.U., Martin, W.N., Richards, D.: Punctuated equilibria: A parallel genetic algorithm. In: Grefenstette, J.J., Lawrence Erlbaum Associates (eds.) Proceedings of the Second International Conference on Genetic Algorithms, p. 148 (1987)
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT Press, Cambridge (1990)
de Langen, P., Juurlink, B.: Trade-offs between voltage scaling and processor shutdown for low-energy embedded multiprocessors. In: Vassiliadis, S., Bereković, M., Hämäläinen, T.D. (eds.) SAMOS 2007. LNCS, vol. 4599, pp. 75–85. Springer, Heidelberg (2007)
Freeh, V.W., Kappiah, N., Lowenthal, D.K., Bletsch, T.K.: Just-in-time dynamic voltage scaling: Exploiting inter-node slack to save energy in mpi programs. J. Parallel Distrib. Comput. 68, 1175–1185 (2008)
Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of np-completeness, pp. 238–239. W.H. Freeman and Co., New York (1979)
Hlavacs, H., Weidlich, R., Hummel, K., Houyou, A., Berl, A., de Meer, H.: Distributed energy efficiency in future home environments. Annals of Telecommunications 63, 473–485 (2008), doi:10.1007/s12243-008-0045-2
Intel pentium m processor datasheet (2004)
Kang, J., Ranka, S.: Energy-efficient dynamic scheduling on parallel machines. In: Sadayappan, P., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2008. LNCS, vol. 5374, pp. 208–219. Springer, Heidelberg (2008)
Khan, S.U., Ahmad, I.: A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids. IEEE Transactions on Parallel and Distributed Systems 20(3), 346–360 (2009)
Kimura, H., Sato, M., Hotta, Y., Boku, T., Takahashi, D.: Emprical study on reducing energy of parallel programs using slack reclamation by dvfs in a power-scalable high performance cluster. In: IEEE International Conference on Cluster Computing, pp. 1–10 (2006)
Koch, G.: Discovering multi-core: Extending the benefits of moore’s law. Technology Intel Magazine (2005)
Koomey, J.G.: Estimating total power consumption by servers in the u.s. and the world
Choon Lee, Y., Zomaya, A.Y.: “Minimizing energy consumption for precedence-constrained applications using dynamic voltage scaling. In: CCGRID 2009: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 92–99 (2009)
Lee, Y., Zomaya, A.Y.: Energy efficient utilization of resources in cloud computing systems. The Journal of Supercomputing, 1–13 (2010), doi:10.1007/s11227-010-0421-3
Lee, Y.C., Zomaya, A.Y.: Minimizing energy consumption for precedence-constrained applications using dynamic voltage scaling. In: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID 2009, pp. 92–99. IEEE Computer Society, Washington, DC, USA (2009)
Lin, M., Ding, C.: Parallel genetic algorithms for DVS scheduling of distributed embedded systems. In: Perrott, R., Chapman, B.M., Subhlok, J., de Mello, R.F., Yang, L.T. (eds.) HPCC 2007. LNCS, vol. 4782, pp. 180–191. Springer, Heidelberg (2007)
Liu, C., Qin, X., Kulkarni, S., Wang, C., Li, S., Manzanares, A., Baskiyar, S.: Distributed energy-efficient scheduling for data-intensive applications with deadline constraints on data grids. In: IEEE International Performance, Computing and Communications Conference, IPCCC 2008, pp. 26–33 (2008)
Miao, L., Qi, Y., Hou, D., Wu, C.L., Dai, Y.H.: Energy saving task scheduling for heterogeneous cmp system based on multi-objective fuzzy genetic algorithm. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2009, pp. 3923–3927 (2009)
Min, R., Furrer, T., Chandrakasan, A.: Dynamic voltage scaling techniques for distributed microsensor networks. In: Proc. IEEE Workshop on VLSI, pp. 43–46 (2000)
Nathuji, R., Schwan, K.: Virtualpower: Coordinated power management in virtualized enterprise systems. In: Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles, SOSP 2007, pp. 265–278. ACM, New York (2007)
Rizvandi, N.B., Taheri, J., Zomaya, A.Y., Lee, Y.C.: Linear combinations of dvfs-enabled processor frequencies to modify the energy-aware scheduling algorithms. In: Proc. of IEEE International Symposium on Cluster Computing and the Grid, pp. 388–397 (2010)
Ruan, X., Qin, X., Zong, Z., Bellam, K., Nijim, M.: An energy-efficient scheduling algorithm using dynamic voltage scaling for parallel applications on clusters. In: Proceedings of 16th International Conference on Computer Communications and Networks, ICCCN 2007, pp. 735–740 (2007)
Simunic, T., Benini, L., Acquaviva, A., Glynn, P., De Micheli, G.: Dynamic voltage scaling and power management for portable systems. In: Proceedings of the 38th Annual Design Automation Conference, DAC 2001, pp. 524–529. ACM, New York (2001)
Srikantaiah, S., Kansal, A., Zhao, F.: Energy Aware Consolidation for Cloud Computing. In: Proceedings of HotPower 2008 Workshop on Power Aware Computing and Systems. USENIX (2008)
Topcuouglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Dist. Systems 13(3), 260–274 (2002)
Zhuo, J., Chakrabarti, C.: Energy-efficient dynamic task scheduling algorithms for dvs systems. ACM Trans. Embed. Comput. Syst. 7(17), 1–25 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kessaci, Y., Mezmaz, M., Melab, N., Talbi, EG., Tuyttens, D. (2011). Parallel Evolutionary Algorithms for Energy Aware Scheduling. In: Bouvry, P., González-Vélez, H., Kołodziej, J. (eds) Intelligent Decision Systems in Large-Scale Distributed Environments. Studies in Computational Intelligence, vol 362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21271-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-21271-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21270-3
Online ISBN: 978-3-642-21271-0
eBook Packages: EngineeringEngineering (R0)