iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-17289-2_8
Lattice-Boltzmann Water Waves | SpringerLink
Skip to main content

Lattice-Boltzmann Water Waves

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6453))

Included in the following conference series:

Abstract

A model for real-time generation of deep-water waves is suggested. It is based on a lattice-Boltzmann (LB) technique. Computation of wave dynamics and (ray-traced) rendering for a lattice of size 10242 can be carried out simultaneously on a single graphics card at 25 frames per second. In addition to the computational speed, the LB technique is seen to offer a simple and physically accurate method for handling both dispersion and wave reflection from obstructing objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gardner, M.: Mathematical games: John conway’s game of life. Scientific American (1970)

    Google Scholar 

  2. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge Univ. Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  3. Geist, R., Steele, J., Westall, J.: Convective clouds. In: Natural Phenomena 2007 (Proc. of the Eurographics Workshop on Natural Phenomena), Prague, Czech Republic, pp. 23 – 30, 83, and back cover (2007)

    Google Scholar 

  4. Geist, R., Westall, J.: Lattice-Boltzmann Lighting Models. In: GPU GEMS 4, vol. 1. Morgan Kaufmann, San Francisco (2010)

    Google Scholar 

  5. Thürey, N., Rüde, U., Stamminger, M.: Animation of open water phenomena with coupled shallow water and free surface simulations. In: SCA 2006: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Vienna, Austria, pp. 157–164 (2006)

    Google Scholar 

  6. Wei, X., Li, W., Mueller, K., Kaufman, A.: The lattice-boltzmann method for gaseous phenomena. IEEE Transactions on Visualization and Computer Graphics 10 (2004)

    Google Scholar 

  7. Kass, M., Miller, G.: Rapid, stable fluid dynamics for computer graphics. In: SIGGRAPH 1990: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, pp. 49–57. ACM, New York (1990)

    Chapter  Google Scholar 

  8. Foster, N., Metaxas, D.: Realistic animation of liquids. Graph. Models Image Process. 58, 471–483 (1996)

    Article  Google Scholar 

  9. Foster, N., Fedkiw, R.: Practical animation of liquids. In: SIGGRAPH 2001: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 23–30. ACM, New York (2001)

    Chapter  Google Scholar 

  10. Stam, J.: Stable fluids. In: SIGGRAPH 1999: Proceedings of the 26th annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, pp. 121–128. ACM Press/Addison-Wesley Publishing Co. (1999)

    Google Scholar 

  11. Mastin, G., Watterberg, P., Mareda, J.: Fourier synthesis of ocean scenes. IEEE Computer Graphics and Applications 7, 16–23 (1987)

    Article  Google Scholar 

  12. Hasselmann, D.E., Dunckel, M., Ewing, J.A.: Directional wave spectra observed during jonswap 1973. Journal of Physical Oceanography 10, 1264–1280 (1980)

    Article  Google Scholar 

  13. Jensen, L.: Deep-water animation and rendering (2001), http://www.gamasutra.com/gdce/2001/jensen/jensen_pfv.htm

  14. GmbH, C.: Cryengine3 specifications (2010), http://www.crytek.com/technology/cryengine-3/specifications/

  15. Hinsinger, D., Neyret, F., Cani, M.P.: Interactive animation of ocean waves. In: SCA 2002: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 161–166. ACM, New York (2002)

    Chapter  Google Scholar 

  16. Yuksel, C., House, D.H., Keyser, J.: Wave particles. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007) 26, 99 (2007)

    Article  Google Scholar 

  17. Tessendorf, J.: Simulating ocean water. In: Simulating Nature: Realistic and Interactive Techniques, SIGGRAPH 2001 Course #47 Notes, Los Angeles, CA (2001)

    Google Scholar 

  18. Tessendorf, J.: Interactive Water Surfaces. In: Game Programming Gems 4. Charles River Media, Rockland (2004)

    Google Scholar 

  19. Salmon, R.: The lattice boltzmann method as a basis for ocean circulation modeling. Journal of Marine Research 57, 503–535 (1999)

    Article  Google Scholar 

  20. Kinsman, B.: Wind Waves: their generation and propagation on the ocean surface. Prentice-Hall, Englewood Cliffs (1965)

    Google Scholar 

  21. Landau, E.: Über die einteilung der positiven ganzen zahlen in vier klassen nach der mindestzahl der zur ihrer additiven zusammensetzung erforderlichen quadrate. Archiv. der Math. und Physik. 13, 305–312 (1908)

    MATH  Google Scholar 

  22. Moree, P., te Riele, H.J.J.: The hexagonal versus the square lattice. Math. Comput. 73, 451–473 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Phillips, O.: On the generation of waves by turbulent wind. Journal of Fluid Mechanics 2, 417–445 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  24. Musgrave, F.: Grid tracing: Fast ray tracing for height fields. Technical Report RR-639, Yale University, Dept. of Comp. Sci. (1988)

    Google Scholar 

  25. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Systems Journal 4, 25–30 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geist, R., Corsi, C., Tessendorf, J., Westall, J. (2010). Lattice-Boltzmann Water Waves. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17289-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17288-5

  • Online ISBN: 978-3-642-17289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics