iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-16584-9_60
Fast 3D Time of Flight Data Segmentation Using the U-V-Histogram Approach | SpringerLink
Skip to main content

Fast 3D Time of Flight Data Segmentation Using the U-V-Histogram Approach

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6424))

Included in the following conference series:

Abstract

For modern assistance systems, time of flight (tof) cameras play a key role in the perception of the environmental situation. Due to benefits of this sensor type, especially in combination with video sensors, it outperforms typical sensor systems, like stereo cameras. However, tof depth image segmentation is yet not solved satisfactorily. Common approaches use homogeneous constraints and therefore assume objects to be parallel to the camera plane. This consequently leads to segmentation errors. This paper proposes a fast segmentation algorithm for detecting distinct planes using statistical knowledge. By projecting the depth image data along the image axis, u-v-histogram images can be constructed. It is shown, that in the histogram images, 3D planes correspond to line segments. A fast approach for line segment extraction in the histogram images is used to find the relevant planes. The algorithm was successfully tested with real data under varying conditions and can be applied for different tof camera sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thrun, S.: Learning occupancy grid maps with forward sensor models. Autonomous Robots 15, 111–127 (2003)

    Article  Google Scholar 

  2. Skutek, M., Linzmeier, D., Appenrodt, N., Wanielik, G.: A precrash system based on sensor data fusion of laser scanner and short range radars. In: 8th International Conference on Information Fusion 2005, vol. 2 (July 2005)

    Google Scholar 

  3. Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P.J., Bunke, H., Goldgof, D., Bowyer, K., Eggert, D., Fitzgibbon, A., Fisher, R.: An experimental comparison of range image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 18, 673–689 (1996)

    Article  Google Scholar 

  4. Moosmann, F., Pink, O., Stiller, C.: Segmentation of 3d lidar data in non-flat urban environments using a local convexity criterion. In: 2009 IEEE Intelligent Vehicles Symposium, pp. 215–220 (2009)

    Google Scholar 

  5. Keller, M., Kolb, A.: Real-time simulation of time-of-ight sensors. Simulation Modelling Practice and Theory 17, 967–978 (2009)

    Article  Google Scholar 

  6. Fardi, B., Dousa, J., Gerd, W., Elias, B., Barke, A.: Obstacle detection and pedestrian recognition using a 3D PMD camera. In: Proceedings of Intelligent Vehicles Symposium, pp. 225–230. IEEE, Los Alamitos (2006)

    Google Scholar 

  7. Parvizi, E., Wu, Q.: Real-time approach for adaptive object segmentation in time-of-flight sensors. In: 20th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2008, vol. 1, pp. 236–240 (November 2008)

    Google Scholar 

  8. Schamm, T., Zöllner, J.M., Vacek, S., Schröder, J., Dillmann, R.: Obstacle detection with a photonic mixing device-camera in autonomous vehicles. International Journal of Intelligent Systems Technologies and Applications 5, 315–324 (2008)

    Article  Google Scholar 

  9. Labayrade, R., Aubert, D., Tarel, J.-P.: Real time obstacle detection in stereovision on non at road geometry through “v-disparity” representation. In: Intelligent Vehicle Symposium, vol. 2, pp. 646–651. IEEE, Los Alamitos (2002)

    Google Scholar 

  10. Hu, Z., Lamosa, F., Uchimura, K.: A complete u-v-disparity study for stereovision based 3d driving environment analysis. In: 3-D Digital Imaging and Modeling, pp. 204–211 (June 2005)

    Google Scholar 

  11. Yip, R.: Line patterns hough transform for line segment detection. In: Proceedings of 1994 IEEE Region 10’s Ninth Annual International Conference on Theme: Frontiers of Computer Technology, TENCON 1994, vol. 1, pp. 319–323 (1994)

    Google Scholar 

  12. Teutsch, M.: Fusion von 6D-Stereo- und Radardaten zur Segmentierung und Attributierung von Objekten im Straßenverkehr. Diploma’s thesis, FZI Forschungszentrum Informatik (January 2009)

    Google Scholar 

  13. Graham, R.: An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set. Information Processing Letters 1, 132–133 (1972)

    Article  MATH  Google Scholar 

  14. Schamm, T., Strand, M., Gumpp, T., Kohlhaas, R., Zöllner, J., Dillmann, R.: Vision and ToF-based driving assistance for a personal transporter. In: International Conference on Advanced Robotics, ICAR 2009 (June 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schamm, T., Rönnau, A., Zöllner, J.M. (2010). Fast 3D Time of Flight Data Segmentation Using the U-V-Histogram Approach. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16584-9_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16584-9_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16583-2

  • Online ISBN: 978-3-642-16584-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics