iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-16007-3_2
Approximate Shortest Path Queries Using Voronoi Duals | SpringerLink
Skip to main content

Approximate Shortest Path Queries Using Voronoi Duals

  • Chapter
Transactions on Computational Science IX

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6290))

Abstract

We propose an approximation method to answer point-to-point shortest path queries in undirected edge-weighted graphs, based on random sampling and Voronoi duals. We compute a simplification of the graph by selecting nodes independently at random with probability p. Edges are generated as the Voronoi dual of the original graph, using the selected nodes as Voronoi sites. This overlay graph allows for fast computation of approximate shortest paths for general, undirected graphs. The time–quality tradeoff decision can be made at query time. We provide bounds on the approximation ratio of the path lengths as well as experimental results. The theoretical worst-case approximation ratio is bounded by a logarithmic factor. Experiments show that our approximation method based on Voronoi duals has extremely fast preprocessing time and efficiently computes reasonably short paths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aardal, K., Chudak, F.A., Shmoys, D.B.: A 3-approximation algorithm for the k-level uncapacitated facility location problem. Information Processing Letters 72, 161–167 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM Journal on Computing 33(3), 544–562 (2004); Announced at STOC 2001

    Article  MATH  MathSciNet  Google Scholar 

  3. Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing Surveys 23(3), 345–405 (1991)

    Article  Google Scholar 

  4. Bauer, R., Delling, D.: SHARC: Fast and robust unidirectional routing. In: Proceedings of the 10th Workshop on Algorithm Engineering and Experiments (ALENEX 2008), pp. 13–26 (2008)

    Google Scholar 

  5. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 303–318. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road networks. In: Proceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX 2007), New Orleans, Louisiana, USA, January 6 (2007)

    Google Scholar 

  7. Baswana, S., Gaur, A., Sen, S., Upadhyay, J.: Distance oracles for unweighted graphs: Breaking the quadratic barrier with constant additive error. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 609–621. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and all-pairs small stretch paths. In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), Berkeley, California, USA, October 21-24, pp. 591–602 (2006)

    Google Scholar 

  9. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC 2007), pp. 590–598 (2007)

    Google Scholar 

  10. Cooperative Association for Internet Data Analysis. Router-level topology measurements (2003), http://www.caida.org/tools/measurement/skitter/router_topology/ file: itdk0304_rlinks_undirected.gz

  11. Chan, T.M., Patrascu, M.: Voronoi diagrams in \(n\cdot2^{O(\sqrt{\lg\lg n})}\) time. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, pp. 31–39 (2007)

    Google Scholar 

  12. Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good as complete graphs. Discrete & Computational Geometry 5, 399–407 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dirichlet, G.L.: Über die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. Journal für die Reine und Angewandte Mathematik 40, 209–227 (1850)

    Article  MATH  Google Scholar 

  15. Doran, J.E.: An approach to automatic problem-solving. Machine Intelligence 1, 105–124 (1967)

    Google Scholar 

  16. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway hierarchies star. In: 9th DIMACS Implementation Challenge (2006)

    Google Scholar 

  17. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an algorithmic lens. In: Proceedings of the 16th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, ACM-GIS 2008, Irvine, California, USA, November 5-7, p. 16 (2008)

    Google Scholar 

  19. Embrechts, P., Mikosch, T., Klüppelberg, C.: Modelling extremal events: for insurance and finance. Springer, London (1997)

    MATH  Google Scholar 

  20. Elkin, M., Peleg, D.: (1 + ε, β)-spanner constructions for general graphs. SIAM Journal on Computing 33(3), 608–631 (2004); Announced at STOC 2001

    Article  MATH  MathSciNet  Google Scholar 

  21. Erwig, M.: The graph Voronoi diagram with applications. Networks 36(3), 156–163 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM 34(3), 596–615 (1987); Announced at FOCS 1984

    Article  MathSciNet  Google Scholar 

  23. Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with fusion trees. Journal of Computer and System Sciences 47(3), 424–436 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets graph theory. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), Vancouver, British Columbia, Canada, January 23-25, pp. 156–165 (2005)

    Google Scholar 

  25. Garg, N., Khandekar, R., Pandit, V.: Improved approximation for universal facility location. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), Vancouver, British Columbia, Canada, January 23-25, pp. 959–960 (2005)

    Google Scholar 

  26. Getoor, L., Senator, T.E., Domingos, P., Faloutsos, C. (eds.): SIGKDD Proceedings (2003)

    Google Scholar 

  27. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Goldberg, A.V., Werneck, R.F.F.: Computing point-to-point shortest paths from external memory. In: Proceedings of the Seventh Workshop on Algorithm Engineering and Experiments (ALENEX 2005), pp. 26–40 (2005)

    Google Scholar 

  29. Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. Journal of Computer and System Sciences 55(1), 3–23 (1997); Announced at STOC 1994

    Article  MATH  MathSciNet  Google Scholar 

  30. Mark Keil, J., Gutwin, C.A.: Classes of graphs which approximate the complete Euclidean graph. Discrete & Computational Geometry 7, 13–28 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks with geographical background. In: Geoinformation und Mobilität – von der Forschung zur praktischen Anwendung, vol. 22, pp. 219–230 (2004)

    Google Scholar 

  32. Ley, M.: The DBLP computer science bibliography: Evolution, research issues, perspectives. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 1–10. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  33. Mehlhorn, K.: A faster approximation algorithm for the Steiner problem in graphs. Information Processing Letters 27(3), 125–128 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Mathematics 1(2) (2003)

    Google Scholar 

  35. Raman, R.: Priority queues: Small, monotone and trans-dichotomous. In: Díaz, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 121–137. Springer, Heidelberg (1996)

    Google Scholar 

  36. Raman, R.: Recent results on the single-source shortest paths problem. SIGACT News 28, 81–87 (1997)

    Article  Google Scholar 

  37. Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: Biogrid: a general repository for interaction datasets. Nucleic Acids Research 34(1), 535–539 (2006)

    Article  Google Scholar 

  38. Shamos, M.I.: Geometric complexity. In: Conference Record of Seventh Annual ACM Symposium on Theory of Computation (STOC 1975), Albuquerque, New Mexico, USA, May 5-7, pp. 224–233 (1975)

    Google Scholar 

  39. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Research 30(1), 303–305 (2002)

    Article  Google Scholar 

  40. Szpankowski, W., Rego, V.: Yet another application of a binomial recurrence. Order statistics. Computing 43(4), 401–410 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sanders, P., Schultes, D.: Engineering highway hierarchies. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  42. Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 23–36. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  43. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  44. Svitkina, Z.: Lower-bounded facility location. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), San Francisco, California, USA, January 20-22, pp. 1154–1163 (2008)

    Google Scholar 

  45. Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. Journal of the ACM 46(3), 362–394 (1999); Announced at FOCS 1997

    Article  MATH  MathSciNet  Google Scholar 

  46. Thorup, M.: Floats, integers, and single source shortest paths. Journal of Algorithms 35(2), 189–201 (2000); Announced at STACS 1998

    Article  MATH  MathSciNet  Google Scholar 

  47. Thorup, M.: On RAM priority queues. SIAM Journal of Computing 30(1), 86–109 (2000); Announced at SODA 1996

    Article  MATH  MathSciNet  Google Scholar 

  48. Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. Journal of the ACM 51(6), 993–1024 (2004); Announced at FOCS 2001

    Article  MATH  MathSciNet  Google Scholar 

  49. Thorup, M.: Integer priority queues with decrease key in constant time and the single source shortest paths problem. Journal of Computer and System Sciences 69(3), 330–353 (2004); Announced at STOC 2003

    Article  MATH  MathSciNet  Google Scholar 

  50. Thorup, M.: Equivalence between priority queues and sorting. Journal of the ACM 54(6) (2007); Announced at FOCS 2002

    Google Scholar 

  51. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM 52(1), 1–24 (2005); Announced at STOC 2001

    Article  MATH  MathSciNet  Google Scholar 

  52. Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die Reine und Angewandte Mathematik 133, 97–178 (1907)

    Google Scholar 

  53. Williams, J.W.J.: Algorithm 232: Heapsort. Communications of the ACM 7, 347–348 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Honiden, S., Houle, M.E., Sommer, C., Wolff, M. (2010). Approximate Shortest Path Queries Using Voronoi Duals. In: Gavrilova, M.L., Tan, C.J.K., Anton, F. (eds) Transactions on Computational Science IX. Lecture Notes in Computer Science, vol 6290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16007-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16007-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16006-6

  • Online ISBN: 978-3-642-16007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics