iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-15948-0_18
Accurate Identification of MCI Patients via Enriched White-Matter Connectivity Network | SpringerLink
Skip to main content

Accurate Identification of MCI Patients via Enriched White-Matter Connectivity Network

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2010)

Abstract

Mild cognitive impairment (MCI), often a prodromal phase of Alzheimer’s disease (AD), is frequently considered to be a good target for early diagnosis and therapeutic interventions of AD. Recent emergence of reliable network characterization techniques have made understanding neurological disorders at a whole brain connectivity level possible. Accordingly, we propose a network-based multivariate classification algorithm, using a collection of measures derived from white-matter (WM) connectivity networks, to accurately identify MCI patients from normal controls. An enriched description of WM connections, utilizing six physiological parameters, i.e., fiber penetration count, fractional anisotropy (FA), mean diffusivity (MD), and principal diffusivities (λ 1, λ 2, λ 3), results in six connectivity networks for each subject to account for the connection topology and the biophysical properties of the connections. Upon parcellating the brain into 90 regions-of-interest (ROIs), the average statistics of each ROI in relation to the remaining ROIs are extracted as features for classification. These features are then sieved to select the most discriminant subset of features for building an MCI classifier via support vector machines (SVMs). Cross-validation results indicate better diagnostic power of the proposed enriched WM connection description than simple description with any single physiological parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bassett, D.S., Bullmore, E.: Small-world brain networks. The Neuroscientist 12(6), 512–523 (2006)

    Article  Google Scholar 

  2. Bischkopf, J., Busse, A., Angermeyer, M.C.: Mild cognitive impairment - a revies of prevalence, incidence and outcome according to current approaches. Acta Psychiatr Scand 106, 403–414 (2002)

    Article  Google Scholar 

  3. Dineen, R.A., Vilisaar, J., Hlinka, J., Bradshaw, C.M., Morgan, P.S., Constantinescu, C.S., Auer, D.P.: Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain 132 (Pt. 1), 239–249 (2009)

    Article  Google Scholar 

  4. Fan, Y., Resnick, S.M., Wu, X., Davatzikos, C.: Structural and functional biomarkers of prodromal Alzheimer’s disease: A high-dimensional pattern classification study. NeuroImage 41, 277–285 (2008)

    Article  Google Scholar 

  5. Gong, G., He, Y., Concha, L., Lebel, C., Gross, D.W., Evans, A.C., Beaulieu, C.: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex 19, 524–536 (2009)

    Article  Google Scholar 

  6. Greicius, M.D., Srivastava, G., Reiss, A.L., Menon, V.: Default-mode network activity distinguishes Alzheimers disease from healthy aging: Evidence from functional MRI. PNAS 101(13), 4637–4642 (2004)

    Article  Google Scholar 

  7. Grundman, M., Petersen, R.C., Ferris, S.H., Thomas, R.G., Aisen, P.S., Bennett, D.A., et al.: Mild cognitive impairment can be distinguished from alzheimer disease and normal aging for clinical trials. Arch. Neurol. 61(1), 59–66 (2004)

    Article  Google Scholar 

  8. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389–422 (2004)

    Google Scholar 

  9. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Computational Biology 6, e159 (2008)

    Google Scholar 

  10. Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., Thiran, J.P.: Mapping human whole-brain structural networks with diffusion MRI. PLoS ONE 2, e597 (2007)

    Article  Google Scholar 

  11. Leemans, A., Jeurissen, B., Sijbers, J., Jones, D.K.: ExploreDTI: A graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: 17th Annual Meeting of Intl. Soc. Mag. Reson. Med., p. 3537 (2009)

    Google Scholar 

  12. Rakotomamonjy, A.: Variable selection using svm based criteria. Journal of Machine Learning Research: Special issue on special feature 3, 1357–1370 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Rose, S.E., Janke, A.L., Chalk, J.B.: Gray and white matter changes in alzheimer’s disease: A diffusion tensor imaging study. Journal of Magnetic Resonance Imaging 27(1), 20–26 (2007)

    Article  Google Scholar 

  14. Sporns, O., Tononi, G., Kotter, R.: The human connectome: a structural description of human brain. PLoS Computational Biology 1, e42 (2005)

    Article  Google Scholar 

  15. Sporns, O., Zwi, J.D.: The small world of the cerebral cortex. Neuroinformatics 2, 145–161 (2004)

    Article  Google Scholar 

  16. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002)

    Article  Google Scholar 

  17. Xu, D., Mori, S., Shen, D., van Zijl, P.C.M., Davatzikos, C.: Spatial normalization of diffusion tensor fields. Magnetic Resonance in Medicine 50(1), 175–182 (2003)

    Article  Google Scholar 

  18. Yap, P.T., Wu, G., Zhu, H., Lin, W., Shen, D.: Fast tensor image morphing for elastic registration. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 721–729. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wee, CY. et al. (2010). Accurate Identification of MCI Patients via Enriched White-Matter Connectivity Network. In: Wang, F., Yan, P., Suzuki, K., Shen, D. (eds) Machine Learning in Medical Imaging. MLMI 2010. Lecture Notes in Computer Science, vol 6357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15948-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15948-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15947-3

  • Online ISBN: 978-3-642-15948-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics