iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-15699-1_39
A Robust Mosaicing Method with Super-Resolution for Optical Medical Images | SpringerLink
Skip to main content

A Robust Mosaicing Method with Super-Resolution for Optical Medical Images

  • Conference paper
Medical Imaging and Augmented Reality (MIAR 2010)

Abstract

Constructing a mosaicing image with a broader field-of-view has become an important topic in image guided diagnosis and treatment. In this paper, we present a robust feature-based method for video mosaicing with super-resolution for optical medical images. Firstly, outliers involved in the feature dataset are removed using trilinear constraints and iterative bundle adjustment, then a minimal cost graph path is built for mosaicing using topology inference. Finally, a mosaicing image with super-resolution is created by way of maximum a posterior (MAP) estimation and selective initialization. The proposed method has been tested with both endoscopic images from totally endoscopic coronary artery bypass surgery and fibered confocal microscopy images. The results showed our method performs better than previously reported methods in terms of accuracy and robustness to deformation and artefacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vercauteren, T., Perchant, A., Malandain, G., Pennec, X., Ayache, N.: Robust mosaicing with correction of motion distortions and tissue deformation for in vivo fibered microscopy. Medical Image Analysis 10(5), 673–692 (2006)

    Article  Google Scholar 

  2. Miranda-Luna, R., Daul, C., Blondel, W.C.P.M., Hernandez-Mier, Y., Wolf, D., Guillemin, F.: Mosaicing of bladder endoscopic image sequences: distortion calibration and registration algorithm. IEEE Trans. on Biomed. Eng. 55, 541–553 (2008)

    Article  Google Scholar 

  3. Can, A., Stewart, C.V., Roysam, B., Tanenbaum, H.L.: A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina. IEEE Trans. PAMI 24, 347–364 (2002)

    Google Scholar 

  4. Bay, H., Tuytelaars, T., Gool, L.V.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Cattin, P.C., Bay, H., Van Gool, L., Szekely, G.: Retina Mosaicing Using Local Features. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 185–192. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Atasoy, S., Noonan, D., Benhimane, S., Navab, N., Yang, G.-Z.: A global approach for automatic fibroscopic video mosaicing in minimally invasive diagnosis. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 850–857. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Lerotic, M., Chung, A.J., Clark, J., Valibeik, S., Yang, G.Z.: Dynamic view expansion for enhanced navigation in Natural Orifice Transluminal Endoscopic Surgery. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 467–475. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Mountney, P., Yang, G.Z.: Dynamic view expansion for minimally invasive surgery using simultaneous localization and mapping. Proc. IEEE Eng. Med. Biol. Soc., 1184–1187 (2009)

    Google Scholar 

  9. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. International Journal of Computer Vision 74, 59–73 (2007)

    Article  Google Scholar 

  10. Lucas, B., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: Proc. IJCAI, pp. 674–679 (1981)

    Google Scholar 

  11. Baker, S., Matthews, I.: Lucas-Kanade 20 Years On: A Unifying Framework. International Journal of Computer Vision 56(3), 221–255 (2004)

    Article  Google Scholar 

  12. Shashua, A.: Algebraic functions for recognition. IEEE Trans. PAMI 17(8), 779–789 (1995)

    Google Scholar 

  13. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  14. Sawhney, H.S., Hsu, S., Kumar, R.: Robust video mosaicing through topology inference and local to global alignment. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 103–119. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Marzotto, R., Fusiello, A., Murino, V.: High resolution video mosaicing with global alignment. In: Proc. CVPR, pp. 692–698 (2004)

    Google Scholar 

  16. McLauchlan, P.F., Jaenicke, A.: Image mosaicing using sequential bundle adjustment. Image and Vision Computing 20, 751–759 (2002)

    Article  Google Scholar 

  17. Capel, D.P.: Image Mosaicing and Super-Resolution, PhD thesis, Dept. of Eng. Science, Univ. of Oxford (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, M. et al. (2010). A Robust Mosaicing Method with Super-Resolution for Optical Medical Images . In: Liao, H., Edwards, P.J."., Pan, X., Fan, Y., Yang, GZ. (eds) Medical Imaging and Augmented Reality. MIAR 2010. Lecture Notes in Computer Science, vol 6326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15699-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15699-1_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15698-4

  • Online ISBN: 978-3-642-15699-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics