iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-15396-9_44
Constraint Programming for Mining n-ary Patterns | SpringerLink
Skip to main content

Constraint Programming for Mining n-ary Patterns

  • Conference paper
Principles and Practice of Constraint Programming – CP 2010 (CP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6308))

Abstract

The aim of this paper is to model and mine patterns combining several local patterns (n-ary patterns). First, the user expresses his/her query under constraints involving n-ary patterns. Second, a constraint solver generates the correct and complete set of solutions. This approach enables to model in a flexible way sets of constraints combining several local patterns and it leads to discover patterns of higher level. Experiments show the feasibility and the interest of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benedetti, M., Lallouet, A., Vautard, J.: Quantified constraint optimization. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 463–477. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Besson, J., Robardet, C., Boulicaut, J.-F.: Mining a new fault-tolerant pattern type as an alternative to formal concept discovery. In: ICCS 2006, Aalborg, Denmark, pp. 144–157. Springer, Heidelberg (2006)

    Google Scholar 

  3. Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: A constraint-based querying system for exploratory pattern discovery. Inf. Syst. 34(1), 3–27 (2009)

    Article  Google Scholar 

  4. Bordeaux, L., Monfroy, E.: Beyond NP: Arc-consistency for quantified constraints. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 371–386. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Bringmann, B., Zimmermann, A.: The chosen few: On identifying valuable patterns. In: 12th IEEE Int. Conf. on Data Mining (ICDM 2007), pp. 63–72 (2007)

    Google Scholar 

  6. Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu, T.: Mafia: A performance study of mining maximal frequent itemsets. In: FIMI 2003. CEUR Workshop Proceedings, vol. 90, CEUR-WS.org (2003)

    Google Scholar 

  7. Calders, T., Rigotti, C., Boulicaut, J.-F.: A survey on condensed representations for frequent sets. In: Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.) Constraint-Based Mining and Inductive Databases. LNCS (LNAI), vol. 3848, pp. 64–80. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. De Raedt, L., Guns, T., Nijssen, S.: Constraint Programming for Itemset Mining. In: ACM SIGKDD Int. Conf. KDD 2008, Las Vegas, Nevada, USA (2008)

    Google Scholar 

  9. De Raedt, L., Zimmermann, A.: Constraint-based pattern set mining. In: 7th SIAM Int. Conf. on Data Mining. SIAM, Philadelphia (2007)

    Google Scholar 

  10. Gervet, C.: Interval Propagation to Reason about Sets: Definition and Implementation of a Practical Language. Constraints 1(3), 191–244 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Giacometti, A., Khanjari Miyaneh, E., Marcel, P., Soulet, A.: A framework for pattern-based global models. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 433–440. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Khiari, M., Boizumault, P., Crémilleux, B.: Combining CSP and constraint-based mining for pattern discovery. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6017, pp. 432–447. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Knobbe, A., Crémilleux, B., Fürnkranz, J., Scholz, M.: From local patterns to global models: The lego approach to data mining. In: Int. Workshop LeGo co-located with ECML/PKDD 2008, Antwerp, Belgium, pp. 1–16 (2008)

    Google Scholar 

  14. Knobbe, A., Ho, E.: Pattern teams. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 577–584. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Ng, R.T., Lakshmanan, V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained associations rules. In: Proceedings of ACM SIGMOD 1998, pp. 13–24. ACM Press, New York (1998)

    Chapter  Google Scholar 

  16. Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space: a constraint programming approach. In: KDD 2009, pp. 647–655 (2009)

    Google Scholar 

  17. Padmanabhan, B., Tuzhilin, A.: A belief-driven method for discovering unexpected patterns. In: KDD, pp. 94–100 (1998)

    Google Scholar 

  18. Soulet, A., Klema, J., Crémilleux, B.: Efficient mining under rich constraints derived from various datasets. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 223–239. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Suzuki, E.: Undirected Discovery of Interesting Exception Rules. Int. Journal of Pattern Recognition and Artificial Intelligence 16(8), 1065–1086 (2002)

    Article  Google Scholar 

  20. Szathmary, L., Napoli, A., Valtchev, P.: Towards Rare Itemset Mining. In: Proc. of the 19th IEEE ICTAI 2007, Patras, Greece, vol. 1 (2007)

    Google Scholar 

  21. Yin, X., Han, J.: CPAR: classification based on predictive association rules. In: Proceedings of the 2003 SIAM Int. Conf. on Data Mining, SDM 2003 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khiari, M., Boizumault, P., Crémilleux, B. (2010). Constraint Programming for Mining n-ary Patterns. In: Cohen, D. (eds) Principles and Practice of Constraint Programming – CP 2010. CP 2010. Lecture Notes in Computer Science, vol 6308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15396-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15396-9_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15395-2

  • Online ISBN: 978-3-642-15396-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics