iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-15331-0_7
Derivational Complexity Is an Invariant Cost Model | SpringerLink
Skip to main content

Derivational Complexity Is an Invariant Cost Model

  • Conference paper
Foundational and Practical Aspects of Resource Analysis (FOPARA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6324))

Abstract

We show that in the context of orthogonal term rewriting systems, derivational complexity is an invariant cost model, both in innermost and in outermost reduction. This has some interesting consequences for (asymptotic) complexity analysis, since many existing methodologies only guarantee bounded derivational complexity.

The authors are partially supported by PRIN project “CONCERTO” and FIRB grant RBIN04M8S8, “Intern. Inst. for Applicable Math.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asperti, A., Coppola, P., Martini, S.: Optimalduplication is not elementary recursive. Inf. Comput. 193(1), 21–56 (2004)

    Article  MATH  Google Scholar 

  2. Asperti, A., Mairson, H.G.: Parallel beta reduction is not elementary recursive. Inf. Comput. 170(1), 49–80 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avanzini, M., Moser, G.: Complexity analysis by rewriting. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 130–146. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Barendregt, H., Eekelen, M., Glauert, J., Kennaway, J., Plasmeijer, M., Sleep, M.: Term graph rewriting. In: de Bakker, J., Nijman, A., Treleaven, P. (eds.) Parallel Languages on PARLE: Parallel Architectures and Languages Europe, vol. II, pp. 141–158. Springer, Heidelberg (1986)

    Google Scholar 

  5. Barendsen, E.: Term graph rewriting. In: Bezem, T.M., Klop, J.W., de Vrijer, R. (eds.) Term Rewriting Systems, ch. 13, pp. 712–743. Cambridge Univ. Press, Cambridge (2003)

    Google Scholar 

  6. Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: On lexicographic termination ordering with space bound certifications. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, pp. 482–493. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Dal Lago, U., Martini, S.: On constructor rewriting systems and the lambda calculus. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 163–174. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Gurevich, Y.: On Kolmogorov machines and related issues. Bulletin of the European Association for Theoretical Computer Science 35, 71–82 (1988)

    Google Scholar 

  9. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency pair method. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 364–379. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Jones, N.D.: Computability and Complexity from a Programming Perspective. MIT Press, Cambridge (1997)

    MATH  Google Scholar 

  11. Knuth, D.: The Art of Computer Programming, vol. 1, pp. 462–463. Prentice Hall, Englewood Cliffs (1973)

    Google Scholar 

  12. Kolmogorov, A.N., Uspensky, V.: On the definition of algorithm. In: Uspekhi Mat. Naut., vol. 13(4), pp. 3–28 (1958)

    Google Scholar 

  13. Marion, J.-Y.: Analysing the implicit complexity of programs. Inform. and Comp. 183(1), 2–18 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Plump, D.: Graph-reducible term rewriting systems. Graph-Grammars and Their Application to Computer Science, pp. 622–636 (1990)

    Google Scholar 

  15. Schönage, A.: Storage modification machines. SIAM J. Comput. 9, 490–508 (1980)

    Article  MathSciNet  Google Scholar 

  16. van Emde Boas, P.: Machine models and simulation. In: Handbook of Theoretical Computer Science. Algorithms and Complexity (A), vol. A, pp. 1–66. MIT Press, Cambridge (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dal Lago, U., Martini, S. (2010). Derivational Complexity Is an Invariant Cost Model. In: van Eekelen, M., Shkaravska, O. (eds) Foundational and Practical Aspects of Resource Analysis. FOPARA 2009. Lecture Notes in Computer Science, vol 6324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15331-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15331-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15330-3

  • Online ISBN: 978-3-642-15331-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics