Abstract
In this paper we present a hierarchical learning method to segment natural colour images combining the perceptual information of three natures: colour, texture, and homogeneity. Human knowledge is incorporated to a hierarchical categorisation process, where each nature features are independently categorised. Final segmentation is achieved through a refinement process using the categorisation information from each segment. Experiments are performed using the Berkeley Segmentation Dataset achieving good results even when comparing them to other significant methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Antón-Rodríguez, M., Díaz-Pernas, F.J., Díez-Higuera, J.F., Martínez-Zarzuela, M., González-Ortega, D., Boto-Giralda, D.: Recognition of coloured and textured images through a multi-scale neural architecture with orientational filtering and chromatic diffusion. Neurocomputing 72(16-18), 3713–3725 (2009)
Carpenter, G.A.: Default ARTMAP. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2003), pp. 1396–1401 (2003)
Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 4(6), 759–771 (1991)
Chen, J., Pappas, T.N., Mojsilovic, A., Rogowitz, B.E.: Adaptive perceptual color-texture image segmentation. IEEE Trans. on Image Processing 14(10), 1524–1536 (2005)
Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognition 34(12), 2259–2281 (2001)
Grossberg, S., Huang, T.: ARTSCENE: A neural system for natural scene classification. Journal of Vision 9(4), 1–19 (2009)
Grossberg, S., Williamson, J.R.: A self-organizing neural system for learning to recognize textured scenes. Vision Research 39, 1385–1406 (1999)
Hanbury, A., Marcotegui, B.: Morphological segmentation on learned boundaries. Image and Vision Computing 27(4), 480–488 (2009)
Martin, D.R., Fowlkes, C., Malik, J.: Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues. IEEE Transaction on Pattern Analysis and Machine Intelligence 26(5), 530–549 (2004)
Martínez-Zarzuela, M., Díaz-Pernas, F.J., Antón-Rodríguez, M., Díez-Higuera, J.F., González-Ortega, D., Boto-Giralda, D., López-González, F., De la Torre-Díez, I.: Multi-scale Neural Texture Classification using the GPU as a Stream Processing Engine. Machine Vision and Applications (2010), doi:10.1007/s00138-010-0254-3
Yang, et al.: MATLAB Toolboxes and Segmentation Results from the BSDS (2008), http://www.eecs.berkeley.edu/~yang/software/lossy_segmentation/ (last visited: December 2009)
Pyun, K., Lim, J., Won, C.S., Gray, R.M.: Image segmentation using hidden Markov Gauss mixture models. IEEE Trans. on Image Processing 16(7), 1902–1911 (2007)
The Berkeley Segmentation Dataset and Benchmark, http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/ (last visited December 2009)
VisTex: Vision texture database, Massachusetts Institute of Technology, http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html (last visited: December 2009)
Yang, A.Y., Wright, J., Ma, Y., Sastry, S.S.: Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding 110(2), 212–225 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Díaz-Pernas, F.J. et al. (2010). Natural Scene Segmentation Method through Hierarchical Nature Categorization. In: de Leon F. de Carvalho, A.P., Rodríguez-González, S., De Paz Santana, J.F., Rodríguez, J.M.C. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14883-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-14883-5_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14882-8
Online ISBN: 978-3-642-14883-5
eBook Packages: EngineeringEngineering (R0)