iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-14162-1_31
Parameterized Modal Satisfiability | SpringerLink
Skip to main content

Parameterized Modal Satisfiability

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6199))

Included in the following conference series:

Abstract

We investigate the parameterized computational complexity of the satisfiability problem for modal logic and attempt to pinpoint relevant structural parameters which cause the problem’s combinatorial explosion, beyond the number of propositional variables v. To this end we study the modality depth, a natural measure which has appeared in the literature, and show that, even though modal satisfiability parameterized by v and the modality depth is FPT, the running time’s dependence on the parameters is a tower of exponentials (unless P=NP). To overcome this limitation we propose possible alternative parameters, namely diamond dimension and modal width. We show fixed-parameter tractability results using these measures where the exponential dependence on the parameters is much milder (doubly and singly exponential respectively) than in the case of modality depth thus leading to FPT algorithms for modal satisfiability with much more reasonable running times. We also give lower bound arguments which prove that our algorithms cannot be improved significantly unless the Exponential Time Hypothesis fails.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blackburn, P., van Benthem, J.F.A.K., Wolter, F.: Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3. Elsevier Science Inc., New York (2006)

    Google Scholar 

  2. Chagrov, A.V., Rybakov, M.N.: How Many Variables Does One Need to Prove PSPACE-hardness of Modal Logics. In: Balbiani, P., Suzuki, N.-Y., Wolter, F., Zakharyaschev, M. (eds.) Advances in Modal Logic, pp. 71–82. King’s College Publications (2002)

    Google Scholar 

  3. Courcelle, B.: The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, Heidelberg (1999)

    Google Scholar 

  5. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  6. Flum, J., Grohe, M.: Parameterized complexity theory. Springer, New York (2006)

    Google Scholar 

  7. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Logic 130(1-3), 3–31 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grohe, M.: Logic, graphs, and algorithms. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 14(091) (2007)

    Google Scholar 

  9. Halpern, J.Y.: The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic. Artif. Intell. 75(2), 361–372 (1995)

    Article  MATH  Google Scholar 

  10. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nguyen, L.A.: On the complexity of fragments of modal logics. Advances in Modal Logic 5, 249–268 (2005)

    Google Scholar 

  13. Woeginger, G.: Exact algorithms for NP-hard problems: A survey. Combinatorial Optimization–Eureka, You Shrink!, 185–207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Achilleos, A., Lampis, M., Mitsou, V. (2010). Parameterized Modal Satisfiability. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14162-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14161-4

  • Online ISBN: 978-3-642-14162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics