iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-13495-1_10
KNOB Particle Swarm Optimizer | SpringerLink
Skip to main content

KNOB Particle Swarm Optimizer

  • Conference paper
Advances in Swarm Intelligence (ICSI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6145))

Included in the following conference series:

Abstract

It is not trivial to tune the swarm behavior just by parameter setting because of the randomness, complexity and dynamic involved in particle swarm optimizer (PSO). Hundreds of variants in the literature of last decade, brought various mechanism or ideas, sometimes also from outside of the traditional metaheuristics field, to tune the swarm behavior. While, in the same time, additional parameters have to be afforded. This paper proposes a new mechanism, named KNOB, to directly tune the swarm behavior through parameter setting of PSO. KNOB is defined as the first principal component of the statistical probability sequence of exploration and exploitation allocation along the search process. The using of the KNOB to tune PSO by parameter setting is realized through a statistical mapping, between the parameter set and the KNOB, learned by a radial basis function neural network (RBFNN) simulation model. In this way, KNOB provides an easy way to tune PSO directly by its parameter setting. A simple application of KNOB to promote is presented to verify the mechanism of KNOB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of the IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)

    Google Scholar 

  2. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. of the 6th Int. Symp. Mcro Machine Human Science, Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  3. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. on Evolutionary Computation. 6, 58–73 (2002)

    Article  Google Scholar 

  4. Poli, R., Broomhead, D.: Exact analysis of the sampling distribution for canonical particle swarm optimiser and its convergence during stagnation. In: Proc. of the IEEE International Conference on Genetic And Evolutionary Computation Conference, London, England, pp. 134–141 (2007)

    Google Scholar 

  5. Zhang, J., Liu, K., Tan, Y., He, X.G.: Allocation of local and global search capabilities of particle in canonical pso. In: Proc. of Genetic and Evolutionary Computation Conference, pp. 165–166 (2008)

    Google Scholar 

  6. Jolliffe, I.T.: Principal component analysis. Springer, Berlin (1986)

    Google Scholar 

  7. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proc. of the IEEE Swarm Intelligence Symposium (SIS), pp. 120–127 (2007)

    Google Scholar 

  8. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization (2005), http://www.ntu.edu.sg/home/EPNSugan

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, J., Liu, K., Tan, Y. (2010). KNOB Particle Swarm Optimizer. In: Tan, Y., Shi, Y., Tan, K.C. (eds) Advances in Swarm Intelligence. ICSI 2010. Lecture Notes in Computer Science, vol 6145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13495-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13495-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13494-4

  • Online ISBN: 978-3-642-13495-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics