Abstract
It is not trivial to tune the swarm behavior just by parameter setting because of the randomness, complexity and dynamic involved in particle swarm optimizer (PSO). Hundreds of variants in the literature of last decade, brought various mechanism or ideas, sometimes also from outside of the traditional metaheuristics field, to tune the swarm behavior. While, in the same time, additional parameters have to be afforded. This paper proposes a new mechanism, named KNOB, to directly tune the swarm behavior through parameter setting of PSO. KNOB is defined as the first principal component of the statistical probability sequence of exploration and exploitation allocation along the search process. The using of the KNOB to tune PSO by parameter setting is realized through a statistical mapping, between the parameter set and the KNOB, learned by a radial basis function neural network (RBFNN) simulation model. In this way, KNOB provides an easy way to tune PSO directly by its parameter setting. A simple application of KNOB to promote is presented to verify the mechanism of KNOB.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of the IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)
Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. of the 6th Int. Symp. Mcro Machine Human Science, Nagoya, Japan, pp. 39–43 (1995)
Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. on Evolutionary Computation. 6, 58–73 (2002)
Poli, R., Broomhead, D.: Exact analysis of the sampling distribution for canonical particle swarm optimiser and its convergence during stagnation. In: Proc. of the IEEE International Conference on Genetic And Evolutionary Computation Conference, London, England, pp. 134–141 (2007)
Zhang, J., Liu, K., Tan, Y., He, X.G.: Allocation of local and global search capabilities of particle in canonical pso. In: Proc. of Genetic and Evolutionary Computation Conference, pp. 165–166 (2008)
Jolliffe, I.T.: Principal component analysis. Springer, Berlin (1986)
Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proc. of the IEEE Swarm Intelligence Symposium (SIS), pp. 120–127 (2007)
Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization (2005), http://www.ntu.edu.sg/home/EPNSugan
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, J., Liu, K., Tan, Y. (2010). KNOB Particle Swarm Optimizer. In: Tan, Y., Shi, Y., Tan, K.C. (eds) Advances in Swarm Intelligence. ICSI 2010. Lecture Notes in Computer Science, vol 6145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13495-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-13495-1_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13494-4
Online ISBN: 978-3-642-13495-1
eBook Packages: Computer ScienceComputer Science (R0)