Abstract
We consider the value of structured priors in the analysis of data sampled from complex adaptive systems. We propose that adaptive dynamics entails basic constraints (memory, information processing) and features (optimization and evolutionary history) that serve to significantly narrow search spaces and candidate parameter values. We suggest that the property of “adaptive self-awareness”, when applicable, further constrains model selection, such that predictive statistical models converge on a systems own internal representation of regularities. Principled model building should therefore begin by identifying a hierarchy of increasingly constrained models based on the adaptive properties of the study system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hughes, J.M., Graham, D.J., Rockmore, D.N.: Quantification of artistic style through sparse coding analysis in the drawings of Pieter Bruegel the Elder. Proceedings of the National Academy of Sciences USA 107, 1279–1283
Hughes, J.M., Graham, D.J., Rockmore, D.N.: Stylometrics of artwork: Uses and limitations. In: Proc. SPIE: Computer Vision and Image Analysis of Art 7531 (2010) (in press)
Johnson Jr., C.R., Hendriks, E., Berezhnoy, I., Brevdo, E., Hughes, S., Daubechies, I., Li, J., Postma, E., Wang, J.: Image processing for artist identification – computerized analysis of Vincent van Gogh’s painting brushstrokes. IEEE Signal Processing Magazine, Special Issue on Visual Cultural Heritage 25(4), 37–48 (2008)
Olshausen, B., Field, D.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)
Olshausen, B., Field, D.: Sparse coding with an overcomplete basis set: A strategy employed by v1. Vision Research 37(23), 3311–3325 (1997)
Clutton-Brock, T., Parker, G.: Punishment in animal societies. Nature 373, 209–216 (1995)
Frank, S.: Repression of competition and the evolution of cooperation. Evolution 57, 693–705 (2003)
Clutton-Brock, T., Albon, S.D., Gibson, R.M., Guinness, F.E.: The logical stag: Adaptive aspects of fighting in red deer (cervus elaphus l.). Anim. Behav. 27, 211–225 (1979)
Maynard Smith, J.: The theory of games and the evolution of animal conflicts. J. Theor. Biol. 47, 209 (1974)
Parker, G., Rubenstein, D.I.: Role of assessment, reserve strategy, and acquisition of information in asymmetric animal conflicts. Anim. Behav. 29, 221–240 (1981)
Taylor, P.W., Elwood, R.W.: The mismeasure of animal contests. Anim. Behav. 65, 1195–1202 (2003)
Mesterton-Gibbons, M., Sherratt, T.N.: Coalition formation: a game-theoretic analysis. Behav. Ecol. 18, 277–286 (2006)
Noe, R., Hammerstein, P.: Biological markets. Trends Ecol. Evol. 10, 336–339 (1995)
Johnstone, R.A.: Eavesdropping and animal conflict. P. Natl. Acad. Sci. USA 98, 9177–9180 (2001)
Covas, R., McGregor, P.K., Doutrelant, C.: Cooperation and communication networks. Behav. Process. 76, 149–151 (2007)
Nowak, M., Sigmund, K.: Evolution of indirect reciprocity by image scoring. Nature 393, 573–577 (1998)
Kamitani, Y., Tong, F.: Decoding the visual and subjective contents of the human brain. Nat. Neurosci. 8(5), 679–685 (2005)
Hanson, S.J., Halchenko, Y.O.: Brain Reading Using Full Brain Support VectorMachines for Object Recognition: There Is No ÒFaceÓ Identification Area. Neural Computation 20, 486–503 (2008)
Dreber, A., Rand, D.G., Fudenberg, D., Nowak, M.A.: Winners don’t punish. Nature 452, 348–351 (2008)
Taylor, P.W., Elwood, R.W.: The mismeasure of animal contests. Anim. Behav. 65, 1195–1202 (2003)
Kazem, A.J.N., Aureli, F.: Redirection of aggression: Multiparty signaling within a network. In: McGregor, P. (ed.) Animal Communication Networks. Cambridge University Press, Cambridge (2005)
Flack, J.C., Girvan, M., de Waal, F.B.M., Krakauer, D.C.: Policing stabilizes construction of social niches in primates. Nature 439, 426–429 (2006)
Dedeo, S., Krakauer, D.C., Flack, J.C.: Inductive game theory and the dynamics of animal conflict. Plos. Computational Biol. (2010)
Farmer, J.D., Geanakoplos, J.: ÒThe Virtues and Vices of Equilibrium and the Future of Financial Economics. Complexity 14, 11–38 (2009)
Gode, D.K., Sunder, S.: Allocative efficiency of markets with zero-intelligence traders: market as a partial substitute for individual rationality. The Journal of Political Economy 101(1), 119–137 (1993)
Daniels, M.G., Farmer, J.D., Gillemot, L., Iori, G., Smith, E.: Quantitative model of price diffusion and market friction based on trading as a mechanistic random process. Physical Review Letters Article no. 108102, 90(10) (2003)
Farmer, J.D., Patelli, P., Zovko, I.I.: The Predicitive Power of Zero Intelligence in Financial Markets. PNAS USA 102(11), 2254–2259 (2005)
Bouchaud, J.-P., Doyne Farmer, J., Lillo, F.: ÒHow Markets Slowly Digest Changes in Supply and Demand.Ó. In: Hens, T., Schenk-Hoppe, K. (eds.) Handbook of Financial Markets: Dynamics and Evolution. Elsevier/Academic Press (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krakauer, D.C., Flack, J.C., Dedeo, S., Farmer, D., Rockmore, D. (2010). Intelligent Data Analysis of Intelligent Systems. In: Cohen, P.R., Adams, N.M., Berthold, M.R. (eds) Advances in Intelligent Data Analysis IX. IDA 2010. Lecture Notes in Computer Science, vol 6065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13062-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-13062-5_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13061-8
Online ISBN: 978-3-642-13062-5
eBook Packages: Computer ScienceComputer Science (R0)