iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-12304-7_44
Multi-view Texturing of Imprecise Mesh | SpringerLink
Skip to main content

Multi-view Texturing of Imprecise Mesh

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5995))

Included in the following conference series:

Abstract

Reprojection of texture issued from cameras on a mesh estimated from multi-view reconstruction is often the last stage of the pipeline, used for rendering, visualization, or simulation of new views. Errors or imprecisions in the recovered 3D geometry are particularly noticeable at this stage. Nevertheless, it is sometimes desirable to get a visually correct rendering in spite of the inaccuracy in the mesh, when correction of this mesh is not an option, for example if the origin of error in the stereo pipeline is unknown, or if the mesh is a visual hull. We propose to apply slight deformations to the data images to fit at best the fixed mesh. This is done by intersecting rays issued from corresponding interest points in different views, projecting the resulting 3D points on the mesh and reprojecting these points on the images. This provides a displacement vector at matched interest points in the images, from which an approximating full distortion vector field can be estimated by thin-plate splines. Using the distorted images as input in texturing algorithms can result in noticeably better rendering, as demonstrated here in several experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atkinson, K. (ed.): Close Range Photogrammetry and Machine Vision. Whittles Publishing (2001)

    Google Scholar 

  2. Faugeras, O., Luong, Q.: The Geometry of Multiple Images. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  3. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  4. Ma, Y., Soatto, S., Koseck, J., Sastry, S.: An Invitation to 3-D Vision. Interdisciplinary Applied Mathematics, vol. 26. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  5. Keriven, R., Faugeras, O.: Complete dense stereovision using level set methods. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 379–394. Springer, Heidelberg (1998)

    Google Scholar 

  6. Pons, J.P., Keriven, R., Faugeras, O.: Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score. The International Journal of Computer Vision 72(2), 179–193 (2007)

    Article  Google Scholar 

  7. Vu, H., Keriven, R., Labatut, P., Pons, J.P.: Towards high-resolution large-scale multi-view stereo. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  8. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  9. Eisemann, M., De Decker, B., Magnor, M., Bekaert, P., de Aguiar, E., Ahmed, N., Theobalt, C., Sellent, A.: Floating Textures. Computer Graphics Forum (Proc. Eurographics EG 2008) 27(2), 409–418 (2008)

    Article  Google Scholar 

  10. Tzur, Y., Tal, A.: Photogrammetric texture mapping using casual images. In: Proceedings of ACM SIGGRAPH (2009)

    Google Scholar 

  11. Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., Kang, S.: Image-based plant modeling. In: Proceedings of ACM SIGGRAPH (2009)

    Google Scholar 

  12. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  13. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of British Machine Vision Conference, vol. I, pp. 384–393 (2002)

    Google Scholar 

  14. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. International Journal of Computer Vision 65 (2005)

    Article  Google Scholar 

  15. Bookstein, F.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. on PAMI 11(6), 567–585 (1989)

    MATH  Google Scholar 

  16. Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  17. Golub, G., Van Loan, C.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  18. Bernardini, F., Martin, I., Rushmeier, H.: High-quality texture reconstruction from multiple scans. IEEE Trans. on Visualization and Computer Graphics 7(4), 318–332 (2001)

    Article  Google Scholar 

  19. Lempistky, V., Ivanov, D.: Seamless mosaicing of image-based texture maps. In: Proc. of ICCV (2007)

    Google Scholar 

  20. Burt, P., Adelson, E.: A multiresolution spline with application to image mosaics. ACM Trans. on Graphics 2(4), 217–236 (1983)

    Article  Google Scholar 

  21. Allène, C., Pons, J.P., Keriven, R.: Seamless image-based texture atlases using multi-band blending. In: Proc. of ICPR, pp. 1–4 (2008)

    Google Scholar 

  22. White, R., Crane, K., Forsyth, D.: Capturing and animating occluded cloth. In: SIGGRAPH (2007)

    Google Scholar 

  23. Furukawa, Y., Ponce, J.: Dense patch models for motion capture from synchronized video streams. Technical report, Willow Technical report 02-07 (2007)

    Google Scholar 

  24. Franco, J.S., Boyer, E.: Exact polyhedral visual hulls. In: British Machine Vision Conference, vol. 1, pp. 329–338 (2003)

    Google Scholar 

  25. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Eurographics Symposium on Geometry Processing, pp. 61–70 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aganj, E., Monasse, P., Keriven, R. (2010). Multi-view Texturing of Imprecise Mesh. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12304-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12304-7_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12303-0

  • Online ISBN: 978-3-642-12304-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics