iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-12297-2_62
Non-rigid Shape Matching Using Geometry and Photometry | SpringerLink
Skip to main content

Non-rigid Shape Matching Using Geometry and Photometry

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5996))

Included in the following conference series:

Abstract

In this paper, we tackle the problem of finding correspondences between three-dimensional reconstructions of a deformable surface at different time steps. We suppose that (i) the mechanical underlying model imposes time-constant geodesic distances between points on the surface; and that (ii) images of the real surface are available. This is for instance the case in spatio-temporal shape from videos (e.g. multi-view stereo, visual hulls, etc.) when the surface is supposed approximatively unstretchable. These assumptions allow to exploit both geometry and photometry. In particular we propose an energy based formulation of the problem, extending the work of Bronstein et al. [1]. On the one hand, we show that photometry (i) improves accuracy in case of locally elastic deformations or noisy surfaces and (ii) allows to still find the right solution when [1] fails because of ambiguities (e.g. symmetries). On the other hand, using geometry makes it possible to match shapes that have undergone large motion, which is not possible with usual photometric methods. Numerical experiments prove the efficiency of our method on synthetic and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bronstein, A., Bronstein, M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. National Academy of Sciences (PNAS) 103(5), 1168–1172 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Three-dimensional scene flow (2005)

    Google Scholar 

  3. Pons, J.P., Keriven, R., Faugeras, O.: Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score. The International Journal of Computer Vision 72(2), 179–193 (2007)

    Article  Google Scholar 

  4. Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Desbrun, M., Pottmann, H. (eds.) Eurographics Association, pp. 197–206 (2005) ISBN 3-905673-24-X

    Google Scholar 

  5. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)

    Article  Google Scholar 

  6. Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid icp algorithms for surface registration. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2007)

    Google Scholar 

  7. Brown, B., Rusinkiewicz, S.: Global non-rigid alignment of 3-D scans. ACM Transactions on Graphics (Proc. SIGGRAPH) 26(3) (August 2007)

    Google Scholar 

  8. Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. In: IEEE Trans. on Pattern Analysis and Machine Intell. LNCS, vol. 25, pp. 1285–1295. Springer, Heidelberg (2003)

    Google Scholar 

  9. Bronstein, A., Bronstein, M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM J. Sci. Comput. 28 (2006)

    Google Scholar 

  10. Furukawa, Y., Ponce, J.: Dense 3d motion capture from synchronized video streams. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Los Alamitos (2008)

    Google Scholar 

  11. Huguet, F., Devernay, F.: A variational method for scene flow estimation from stereo sequences. In: ICCV, pp. 1–7 (2007)

    Google Scholar 

  12. Starck, J., Hilton, A.: Correspondence labelling for wide-timeframe free-form surface matching. In: IEEE International Conference on Computer Vision, ICCV (2007)

    Google Scholar 

  13. Starck, J., Hilton, A.: Spherical matching for temporal correspondence of non-rigid surfaces. In: ICCV, pp. 1387–1394 (2005)

    Google Scholar 

  14. Ahmed, N., Theobalt, C., Roessl, C., Thrun, S., Seidel: Dense correspondence finding for parametrization-free animation reconstruction from video. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Los Alamitos (2008)

    Google Scholar 

  15. Varanasi, K., Zaharescu, A., Boyer, E., Horaud, R.: Temporal surface tracking using mesh evolution. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 30–43. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Keriven, R., Faugeras, O.: Complete dense stereovision using level set methods. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, p. 379. Springer, Heidelberg (1998)

    Google Scholar 

  17. Allène, C., Pons, J.P., Keriven, R.: Seamless image-based texture atlases using multi-band blending. In: 19th International Conference on Pattern Recognition, Tampa, US (December 2008)

    Google Scholar 

  18. Sethian, J.A.: Fast marching methods. SIAM Review 41, 199–235 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds (1998)

    Google Scholar 

  20. Bronstein, M., Bronstein, A., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. Techn. Report CIS-2006-02, Dept. of Computer Science, Technion, Israel (2006)

    Google Scholar 

  21. Moenning, C., Dodgson, N.A.: Fast marching farthest point sampling. In: EuroGraphics (September 2003)

    Google Scholar 

  22. Dasgupta, S., Papadimitriou, C., Vazirani, U.: Algorithms. McGrawHill, New York (2007)

    Google Scholar 

  23. Starck, J., Hilton, A.: Surface capture for performance based animation. IEEE Computer Graphics and Applications 27(3), 21–31 (2007)

    Article  Google Scholar 

  24. Bronstein, A., Bronstein, M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A gromov-hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. International Journal of Computer Vision (IJCV) (submitted)

    Google Scholar 

  25. Vu, H., Keriven, R., Labatut, P., Pons, J.: Towards high-resolution large-scale multi-view stereo. In: Conference on Computer Vision and Pattern Recognition (CVPR) (June 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thorstensen, N., Keriven, R. (2010). Non-rigid Shape Matching Using Geometry and Photometry. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12297-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12297-2_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12296-5

  • Online ISBN: 978-3-642-12297-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics