iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-11266-9_19
Symbolic OBDD-Based Reachability Analysis Needs Exponential Space | SpringerLink
Skip to main content

Symbolic OBDD-Based Reachability Analysis Needs Exponential Space

  • Conference paper
SOFSEM 2010: Theory and Practice of Computer Science (SOFSEM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5901))

Abstract

Ordered binary decision diagrams (OBDDs) are one of the most common dynamic data structures for Boolean functions. Nevertheless, many basic graph problems are known to be PSPACE-hard if their input graphs are represented by OBDDs. Despite the hardness results there are not many concrete nontrivial lower bounds known for the complexity of problems on OBDD-represented graph instances. Computing the set of vertices that are reachable from some predefined vertex s ∈ V in a directed graph G = (V,E) is an important problem in computer-aided design, hardware verification, and model checking. Until now only exponential lower bounds on the space complexity of a restricted class of OBDD-based algorithms for the reachability problem have been known. Here, the result is extended by presenting an exponential lower bound on the space complexity of an arbitrary OBDD-based algorithm for the reachability problem. As a by-product a general exponential lower bound is obtained for the computation of OBDDs representing all connected node pairs in a graph, the transitive closure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balcázar, J.L., Lozano, A.: The Complexity of Graph Problems for Succinctly Represented Graphs. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 277–285. Springer, Heidelberg (1990)

    Google Scholar 

  2. Bollig, B.: On the OBDD Complexity of the Most Significant Bit of Integer Multiplication. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 306–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Bollig, B.: Larger Lower Bounds on the OBDD Complexity of Integer Multiplication. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 212–223. Springer, Heidelberg (2009)

    Google Scholar 

  4. Bollig, B., Klump, J.: New Results on the Most Significant Bit of Integer Multiplication. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 883–894. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Computers 35, 677–691 (1986)

    Article  MATH  Google Scholar 

  6. Bryant, R.E.: On the Complexity of VLSI Implementations and Graph Representations of Boolean Functions with Application to Integer Multiplication. IEEE Trans. on Computers 40, 205–213 (1991)

    Article  Google Scholar 

  7. Burch, J.R., Clarke, E.M., Long, D.E., Mc Millan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model Checking: 1020 States and Beyond. In: Proc. of Symposium on Logic in Computer Science, pp. 428–439 (1990)

    Google Scholar 

  8. Coudert, O., Berthet, C., Madre, J.C.: Verification of Synchronous Sequential Machines Based on Symbolic Execution. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 365–373. Springer, Heidelberg (1990)

    Google Scholar 

  9. Feigenbaum, J., Kannan, S., Vardi, M.V., Viswanathan, M.: Complexity of Problems on Graphs Represented as OBDDs. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 216–226. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Galperin, H., Wigderson, A.: Succinct Representations of Graphs. Information and Control 56, 183–198 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gentilini, R., Piazza, C., Policriti, A.: Computing Strongly Connected Components in a Linear Number of Symbolic Steps. In: Proc. of SODA, pp. 573–582. ACM Press, New York (2003)

    Google Scholar 

  12. Gentilini, R., Piazza, C., Policriti, A.: Symbolic Graphs: Linear Solutions to Connectivity Related Problems. Algorithmica 50, 120–158 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hachtel, G.D., Somenzi, F.: A Symbolic Algorithm for Maximum Flow in 0 − 1 Networks. Formal Methods in System Design 10, 207–219 (1997)

    Article  Google Scholar 

  14. Jukna, S.: The Effect of Null-Chains on the Complexity of Contact Schemes. In: Csirik, J.A., Demetrovics, J., Gecseg, F. (eds.) FCT 1989. LNCS, vol. 380, pp. 246–256. Springer, Heidelberg (1989)

    Google Scholar 

  15. Krause, M., Meinel, C., Waack, S.: Separating the Eraser Turing Machine Classes L e , NL e , co-NL e and P e . Theoretical Computer Science 86, 267–275 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Papadimitriou, C.H., Yannakakis, M.: A Note on Succinct Representations of Graphs. Information and Control 71, 181–185 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sawitzki, D.: Implicit Flow Maximization by Iterative Squaring. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 301–313. Springer, Heidelberg (2004)

    Google Scholar 

  18. Sawitzki, D.: Lower Bounds on the OBDD Size of Graphs of Some Popular Functions. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 298–309. Springer, Heidelberg (2005)

    Google Scholar 

  19. Sawitzki, D.: Algorithmik und Komplexität OBDD-repräsentierter Graphen. PhD Thesis, University of Dortmund, in German (2006)

    Google Scholar 

  20. Sawitzki, D.: Exponential Lower Bounds on the Space Complexity of OBDD-Based Graph Algorithms. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 781–792. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Sieling, D., Wegener, I.: NC-Algorithms for Operations on Binary Decision Diagrams. Parallel Processing Letters 48, 139–144 (1993)

    MATH  MathSciNet  Google Scholar 

  22. Wegener, I.: Branching Programs and Binary Decision Diagrams – Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications (2000)

    Google Scholar 

  23. Woelfel, P.: Symbolic Topological Sorting with OBDDs. Journal of Discrete Algorithms 4(1), 51–71 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bollig, B. (2010). Symbolic OBDD-Based Reachability Analysis Needs Exponential Space. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11266-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11265-2

  • Online ISBN: 978-3-642-11266-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics