Abstract
This paper follows a geostatistical approach for the evaluation, modelling and visualization of the possible local interactions between natural components and built-up elements in seismic risk analysis. This method, applied to old town centre of Potenza hilltop town, offers a new point of view for civil protection planning using kernel density and autocorrelation indexes maps to analyse macroseismic damage scenarios and to evaluate the local geological, geomorphological and 1857 earthquake’s macroseismic data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tobler, W.R.: A Computer Model Simulating Urban Growth in the Detroit Region. Economic Geography 46, 234–240 (1970)
Gatrell, A.C., Bailey, T.C., Diggle, P.J., Rowlingson, B.S.: Spatial Point Pattern Analysis and Its Application in Geographical Epidemiology. Transaction of Institute of British Geographer 21, 256–271 (1996)
Bailey, T.C., Gatrell, A.C.: Interactive Spatial Data Analysis. Longman Higher Education, Harlow (1995)
O’Sullivan, D., Wong, D.W.S.: A Surface-Based Approach to Measuring Spatial Segregation. Geographical Analysis, 147–168 (2007)
Danese, M., Lazzari, M., Murgante, B.: Kernel Density Estimation Methods for a Geostatistical Approach in Seismic Risk Analysis: the Case Study of Potenza Hilltop Town (southern Italy). In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 415–429. Springer, Heidelberg (2008)
Danese, M., Lazzari, M., Murgante, B.: Integrated Geological, Geomorphological and Geostatistical analysis to study macroseismic effects of 1980 Irpinian earthquake in urban areas (southern Italy). In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M. (eds.) ICCSA 2009. LNCS, vol. 5592, pp. 302–9743. Springer, Heidelberg (in press, 2009)
Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman and Hall, London (1986)
Breiman, L., Meisel, W., Purcell, E.: Variable Kernel Estimates of Multivariate Densities. Technometrics 19, 135–144 (1977)
Levine, N.: CrimeStat III: A Spatial Statistics Program for the Analysis of Crime Incident Locations. Ned Levine & Associates, Houston, TX, and the National Institute of Justice, Washington, DC (2004)
Sacks, J., Ylvisaker, D.: Asymptotically Optimum Kernels for Density Estimates at a Point. Annals of Statistics 9, 334–346 (1981)
Borruso, G.: Network Density and the Delimitation of Urban Areas. Transaction in GIS, 7 2, 177–191 (2003)
Miller, H.: A Measurement Theory for Time Geography. Geographical Analysis 37, 17–45 (2005)
Burt, J.E., Barber, G.M.: Elementary Statistics for Geographers, 2nd edn. The Guilford Press, New York (1996)
Bailey, T.C., Gatrell, A.C.: Interactive Spatial Data Analysis. Longman Higher Education, Harlow (1995)
Epanechnikov, V.A.: Nonparametric Estimation of a Multivariate Probability Density. Theory of Probability and Its Applications 14, 153–158 (1969)
Downs, J.A., Horner, M.W.: Characterising Linear Point Patterns. In: Proceedings of the GIS Research UK Annual Conference (GISRUK 2007), Maynooth, Ireland (2007)
Jones, M.C., Marron, J.S., Sheather, S.J.: A Brief Survey of Bandwidth Selection for Density Estimation. Journal of the American Statistical Association 91, 401–407 (1996)
Sheather, S.J.: An Improved Data-Based Algorithm for Choosing the Window Width When Estimating the Density at a Point. Computational Statistics and Data Analysis 4, 61–65 (1986)
Hall, P., Sheather, S.J., Jones, M.C., Marron, J.S.: On Optimal Data-Based Bandwidth Selection in Kernel Density Estimation. Biometrika 78, 263–269 (1991)
Hazelton, M.: Optimal Rates for Local Bandwidth Selection. J. Nonparametr. Statist. 7, 57–66 (1996)
Sillverman, B.W., Jones, M.C., Fix, E., Hodges, J.L.: An important contribution to nonparametric discriminant analysis and density estimation. International Statistical Review 57(3), 233–247 (1951)
Loftsgaarden, D.O., Quesenberry, C.P.: A Nonparametric Estimate of a Multivariate Density Function. Ann. Math. Statist. 36, 1049–1051 (1965)
Clark, P.J., Evans, F.C.: Distance to Nearest Neighbour as a Measure of Spatial Relationships in Populations. Ecology 35, 445–453 (1994)
Cao, R., Cuevas, A., González-Manteiga, W.: A Comparative study of several smoothing methods in density estimation. Computational Statistic and Data Analysis 17, 153–176 (1994)
Wand, M., Jones, M.C.: Kernel Smoothing. Chapman & Hall, London (1995)
Simonoff, J.: Smoothing Methods in Statistics. Springer, New York (1996)
Chiu, S.T.: A comparative Review of Bandwidth Selection for Kernel Density Estimation. Statistica Sinica 6, 129–145 (1996)
Devroye, L., Lugosi, T.: Variable Kernel Estimates: on the Impossibility of Tuning the Parameters. In: Giné, E., Mason, D. (eds.) High-Dimensional Probability. Springer, New York (1994)
Murgante, B., Las Casas, G., Danese, M.: Where are the slums? New approaches to urban regeneration. In: Liu, H., Salerno, J., Young, M. (eds.) Social Computing, Behavioral Modeling and Prediction, pp. 176–187. Springer US, Heidelberg (2008)
Brunsdon, C.: Estimating Probability Surfaces for Geographical Points Data: An Adaptive Kernel Algorithm. Computers and Geosciences, 21 7, 877–894 (1995)
Abramson, L.S.: On Bandwidth Variation in Kernel Estimates - A Square Root Law. Ann. Stat. 10, 1217–1223 (1982)
Breiman, L., Meisel, W., Purcell, E.: Variable Kernel Estimates of Multivariate Densities. Technometrics 19, 135–144 (1977)
Hall, P., Marron, J.S.: On the Amount of Noise Inherent in Band-Width Selection for a Kernel Density Estimator. The Annals of Statistics 15, 163–181 (1987)
Hall, P., Hu, T.C., Marron, J.S.: Improved Variable Window Kernel Estimates of Probability Densities. Ann. Statist. 23, 1–10 (1994)
Sain, S.R., Scott, D.W.: On Locally Adaptive Density Estimation. J. Amer. Statist. Assoc. 91, 1525–1534 (1996)
Wu, C.O.: A Cross-Validation Bandwidth Choice for Kernel Density Estimates with Selection Biased Data. Journal of Multivariate Analysis 61, 38–60 (1999)
Härdle, W.: Smoothing Techniques with Implementation in S. Springer, New York (1991)
Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S - Plus Illustrations. Oxford Science Publications, Oxford University Press, Oxford (1997)
Murgante, B., Las Casas, G., Danese, M.: The periurban city: Geo-statistical methods for its definition. In: Coors, Rumor, Fendel, Zlatanova (eds.) Urban and Regional Data Management, pp. 473–485. Taylor & Francis Group, London (2008)
Chainey, S., Reid, S., Stuart, N.: When is a Hotspot a Hotspot? A Procedure for Creating Statistically Robust Hotspot Maps of Crime. In: Kidner, D., Higgs, G., White, S. (eds.) Innovations in GIS 9: Socio-Economic Applications of Geographic Information Science, pp. 21–36. Taylor and Francis, Abington (2002)
Moran, P.: The interpretation of statistical maps. Journal of the Royal Statistical Society 10, 243–251 (1948)
Anselin, L.: Local Indicators of Spatial Association – LISA. Geographical Analysis 27, 93–115 (1995)
Getis, A., Ord, J.K.: The analysis of spatial association by use of distance statistics. Geographical Analysis 24, 189–206 (1992)
Gizzi, F.T., Lazzari, M., Masini, N., Zotta, C., Danese, M.: Geological-Geophysical and Historical-Macroseismic Data Implemented in a Geodatabase: a GIS Integrated Approach for Seismic Microzonation. The Case-Study of Potenza Urban Area (Southern Italy). Geophysical Research Abstracts 9(09522), SRef-ID: 1607-7962/gra/EGU2007-A-09522 (2007)
Grünthal, G.G.: European Macroseismic Scale 1998. In: Conseil de l’Europe Cahiers du Centre Européen de Géodynamique et de Séisomologie, Luxembourg, vol. 15 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Danese, M., Lazzari, M., Murgante, B. (2009). Geostatistics in Historical Macroseismic Data Analysis. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science VI. Lecture Notes in Computer Science, vol 5730. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10649-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-10649-1_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10648-4
Online ISBN: 978-3-642-10649-1
eBook Packages: Computer ScienceComputer Science (R0)