Abstract
This paper presents a study that applies the Artificial Bee Colony algorithm to integer programming problems and compares its performance with those of Particle Swarm Optimization algorithm variants and Branch and Bound technique presented to the literature. In order to cope with integer programming problems, in neighbour solution production unit, solutions are truncated to the nearest integer values. The experimental results show that Artificial Bee Colony algorithm can handle integer programming problems efficiently and Artificial Bee Colony algorithm can be considered to be very robust by the statistics calculated such as mean, median, standard deviation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Laskari, E.C., Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization for integer programming. In: CEC 2002: Proceedings of the Evolutionary Computation on 2002. CEC 2002. Proceedings of the 2002 Congress, pp. 1582–1587. IEEE Computer Society, Los Alamitos (2002)
Nemhauser, G.L., Wolsey, L.A.: Integer Progamming. In: Handbooks in Operations Research and Management Science, vol. 1. Elsevier Science and Technology, Amsterdam (1989)
Misra, K.B., Sharma, U.: An efficient algorithm to solve integer-programming problems arising in system-reliability design. IEEE Transactions On Reliability 40(1), 81–91 (1991)
Rouillon, S., Desaulniers, G., Soumis, F.: An extended branch-and-bound method for locomotive assignment. Transportation Research Part B: Methodological 40(5), 404–423 (2006)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks 1995, vol. 4, pp. 1942–1948 (1995)
Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)
Tereshko, V.: Reaction–diffusion model of a honeybee colony’s foraging behaviour. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917. Springer, Heidelberg (2000)
Sun, J., Feng, B., Xu, W.: Particle swarm optimization with particles having quantum behavior. In: Evolutionary Computation, CEC 2004, vol. 1, June 2004, pp. 325–331 (2004)
Rudolph, G.: An evolutionary algorithm for integer programming. In: PPSN III: Proceedings of the International Conference on Evolutionary Computation. The Third Conference on Parallel Problem Solving from Nature, pp. 139–148. Springer, Heidelberg (1994)
Glankwahmdee, A., Liebman, J.S., Hogg, G.L.: Unconstrained discrete nonlinear programming. Engineering Optimization 4, 95–107 (1979)
Rao, S.S.: Engineering Optimization- Theory and Practice. Wiley Eastern, New Delhi (1996)
Liu, J., Sun, J., Xu, W.: Quantum-Behaved Particle Swarm Optimization for Integer Programming. In: King, I., Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006. LNCS, vol. 4233, pp. 1042–1050. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Akay, B., Karaboga, D. (2009). Solving Integer Programming Problems by Using Artificial Bee Colony Algorithm. In: Serra, R., Cucchiara, R. (eds) AI*IA 2009: Emergent Perspectives in Artificial Intelligence. AI*IA 2009. Lecture Notes in Computer Science(), vol 5883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10291-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-10291-2_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10290-5
Online ISBN: 978-3-642-10291-2
eBook Packages: Computer ScienceComputer Science (R0)