iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-10291-2_36
Solving Integer Programming Problems by Using Artificial Bee Colony Algorithm | SpringerLink
Skip to main content

Solving Integer Programming Problems by Using Artificial Bee Colony Algorithm

  • Conference paper
AI*IA 2009: Emergent Perspectives in Artificial Intelligence (AI*IA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5883))

Included in the following conference series:

Abstract

This paper presents a study that applies the Artificial Bee Colony algorithm to integer programming problems and compares its performance with those of Particle Swarm Optimization algorithm variants and Branch and Bound technique presented to the literature. In order to cope with integer programming problems, in neighbour solution production unit, solutions are truncated to the nearest integer values. The experimental results show that Artificial Bee Colony algorithm can handle integer programming problems efficiently and Artificial Bee Colony algorithm can be considered to be very robust by the statistics calculated such as mean, median, standard deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Laskari, E.C., Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization for integer programming. In: CEC 2002: Proceedings of the Evolutionary Computation on 2002. CEC 2002. Proceedings of the 2002 Congress, pp. 1582–1587. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  2. Nemhauser, G.L., Wolsey, L.A.: Integer Progamming. In: Handbooks in Operations Research and Management Science, vol. 1. Elsevier Science and Technology, Amsterdam (1989)

    Google Scholar 

  3. Misra, K.B., Sharma, U.: An efficient algorithm to solve integer-programming problems arising in system-reliability design. IEEE Transactions On Reliability 40(1), 81–91 (1991)

    Article  MATH  Google Scholar 

  4. Rouillon, S., Desaulniers, G., Soumis, F.: An extended branch-and-bound method for locomotive assignment. Transportation Research Part B: Methodological 40(5), 404–423 (2006)

    Article  Google Scholar 

  5. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks 1995, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  6. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  7. Tereshko, V.: Reaction–diffusion model of a honeybee colony’s foraging behaviour. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Sun, J., Feng, B., Xu, W.: Particle swarm optimization with particles having quantum behavior. In: Evolutionary Computation, CEC 2004, vol. 1, June 2004, pp. 325–331 (2004)

    Google Scholar 

  9. Rudolph, G.: An evolutionary algorithm for integer programming. In: PPSN III: Proceedings of the International Conference on Evolutionary Computation. The Third Conference on Parallel Problem Solving from Nature, pp. 139–148. Springer, Heidelberg (1994)

    Google Scholar 

  10. Glankwahmdee, A., Liebman, J.S., Hogg, G.L.: Unconstrained discrete nonlinear programming. Engineering Optimization 4, 95–107 (1979)

    Article  Google Scholar 

  11. Rao, S.S.: Engineering Optimization- Theory and Practice. Wiley Eastern, New Delhi (1996)

    Google Scholar 

  12. Liu, J., Sun, J., Xu, W.: Quantum-Behaved Particle Swarm Optimization for Integer Programming. In: King, I., Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006. LNCS, vol. 4233, pp. 1042–1050. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akay, B., Karaboga, D. (2009). Solving Integer Programming Problems by Using Artificial Bee Colony Algorithm. In: Serra, R., Cucchiara, R. (eds) AI*IA 2009: Emergent Perspectives in Artificial Intelligence. AI*IA 2009. Lecture Notes in Computer Science(), vol 5883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10291-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10291-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10290-5

  • Online ISBN: 978-3-642-10291-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics