iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-10291-2_34
Analyzing Interactive QA Dialogues Using Logistic Regression Models | SpringerLink
Skip to main content

Analyzing Interactive QA Dialogues Using Logistic Regression Models

  • Conference paper
AI*IA 2009: Emergent Perspectives in Artificial Intelligence (AI*IA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5883))

Included in the following conference series:

Abstract

With traditional Question Answering (QA) systems having reached nearly satisfactory performance, an emerging challenge is the development of successful Interactive Question Answering (IQA) systems. Important IQA subtasks are the identification of a dialogue-dependent typology of Follow Up Questions (FU Qs), automatic detection of the identified types, and the development of different context fusion strategies for each type. In this paper, we show how a system relying on shallow cues to similarity between utterances in a narrow dialogue context and other simple information sources, embedded in a machine learning framework, can improve FU Q answering performance by implicitly detecting different FU Q types and learning different context fusion strategies to help re-ranking their candidate answers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, F., Feng, J., Di Fabbrizio, G.: A data driven approach to relevancy recognition for contextual question answering. In: Interactive Question Answering Workshop (2006)

    Google Scholar 

  2. Bertomeu, N.: A Memory and Attention-Bases Approach to Fragment Resolution and its Application in a Question Answering System. PhD thesis, Universität des Saarlandes (2007)

    Google Scholar 

  3. Van Schooten, B., Op den Akker, R., Rosset, S., Galibert, O., Max, A., Illouz, G.: Follow-up question handling in the imix and ritel systems: A comparative study. Nat. Lang. Eng. 15(1), 97–118 (2009)

    Article  Google Scholar 

  4. Chai, J.Y., Jin, R.: Discourse structure for context question answering. In: Proceedings of the Workshop on Pragmatics of Question Answering at HLT-NAACL 2004 (2004)

    Google Scholar 

  5. Sun, M., Chai, J.: Discourse processing for context question answering based on linguistic knowledge. Know.-Based Syst. 20(6), 511–526 (2007)

    Article  Google Scholar 

  6. Burek, G., De Roeck, A., Zdrahal, Z.: Hybrid mappings of complex questions over an integrated semantic space. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588. Springer, Heidelberg (2005)

    Google Scholar 

  7. Tomás, D., Vicedo, J., Bisbal, E., Moreno, L.: Experiments with lsa for passage re-ranking in question answering. In: CLEF Proceedings (2006)

    Google Scholar 

  8. Moschitti, A., Quarteroni, S.: Kernels on linguistic structures for answer extraction. In: Proceedings of ACL 2008: HLT, Short Papers, pp. 113–116 (2008)

    Google Scholar 

  9. Kirschner, M., Bernardi, R.: An empirical view on iqa follow-up questions. In: Proc. of the 8th SIGdial Workshop on Discourse and Dialogue (2007)

    Google Scholar 

  10. Manning, C.D., Schütze, H.: Foundations of statistical natural language processing. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  11. Sahlgren, M.: The Word-Space Model. Dissertation, Stockholm University (2006)

    Google Scholar 

  12. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of text semantic similarity. In: Proceedings of AAAI (2006)

    Google Scholar 

  13. Fellbaum, C. (ed.): WordNet: An electronic lexical database. MIT Press, Cambrdige (1998)

    MATH  Google Scholar 

  14. Agresti, A.: Categorical data analysis. Wiley, New York (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirschner, M., Bernardi, R., Baroni, M., Dinh, L.T. (2009). Analyzing Interactive QA Dialogues Using Logistic Regression Models. In: Serra, R., Cucchiara, R. (eds) AI*IA 2009: Emergent Perspectives in Artificial Intelligence. AI*IA 2009. Lecture Notes in Computer Science(), vol 5883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10291-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10291-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10290-5

  • Online ISBN: 978-3-642-10291-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics