Abstract
In a specific process of business intelligence, i.e. investigation on organized crime, empirical language processing technologies can play a crucial role. The analysis of transcriptions on investigative activities, such as police interrogatories, for the recognition and storage of complex relations among people and locations is a very difficult and time consuming task, ultimately based on pools of experts. We discuss here an inductive relation extraction platform that opens the way to much cheaper and consistent workflows. The presented empirical investigation shows that accurate results, comparable to the expert teams, can be achieved, and parametrization allows to fine tune the system behavior for fitting domain-specific requirements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
ASTREA (Information and communication for justice) coordinated by Italian Research Council/Research Institute on Judicial Systems (IRSIG-CNR), http://astrea.cineca.it/
Carreras, X., Marquez, L.: Introduction to the conll-2005 shared task: Semantic role labeling. In: Proc. of CoNLL, Ann Arbor, Michigan, pp. 152–164 (2005)
Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. J. Mach. Learn. Res. 3, 1083–1106 (2003)
Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In: Proceedings of ACL 2004, Barcelona, Spain, pp. 423–429 (2004)
Bunescu, R., Mooney, R.: Subsequence kernels for relation extraction. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems 18, pp. 171–178. MIT Press, Cambridge (2006)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string kernels. Journal of Machine Learning Research 2 (2002)
Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Moschitti, A., Pighin, D., Basili, R.: Tree Kernels for Semantic Role Labeling. Computational Linguistics Special Issue on Semantic Role Labeling (3) (2008)
Moschitti, A., Cosmin, A.B.: A semantic kernel for predicate argument classification. In: CoNLL 2004, Boston, MA, USA (2004)
Giuglea, A.M., Moschitti, A.: Semantic Role Labeling via Framenet, Verbnet and Propbank. In: Proceedings of ACL 2006, Sydney, Australia (2006)
Bloehdorn, S., Moschitti, A.: Structure and semantics for expressive text kernels. In: Proc. of CIKM 2007 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Basili, R., Giannone, C., Del Vescovo, C., Moschitti, A., Naggar, P. (2009). Kernel-Based Learning for Domain-Specific Relation Extraction. In: Serra, R., Cucchiara, R. (eds) AI*IA 2009: Emergent Perspectives in Artificial Intelligence. AI*IA 2009. Lecture Notes in Computer Science(), vol 5883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10291-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-10291-2_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10290-5
Online ISBN: 978-3-642-10291-2
eBook Packages: Computer ScienceComputer Science (R0)