iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-10291-2_17
Kernel-Based Learning for Domain-Specific Relation Extraction | SpringerLink
Skip to main content

Kernel-Based Learning for Domain-Specific Relation Extraction

  • Conference paper
AI*IA 2009: Emergent Perspectives in Artificial Intelligence (AI*IA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5883))

Included in the following conference series:

Abstract

In a specific process of business intelligence, i.e. investigation on organized crime, empirical language processing technologies can play a crucial role. The analysis of transcriptions on investigative activities, such as police interrogatories, for the recognition and storage of complex relations among people and locations is a very difficult and time consuming task, ultimately based on pools of experts. We discuss here an inductive relation extraction platform that opens the way to much cheaper and consistent workflows. The presented empirical investigation shows that accurate results, comparable to the expert teams, can be achieved, and parametrization allows to fine tune the system behavior for fitting domain-specific requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ASTREA (Information and communication for justice) coordinated by Italian Research Council/Research Institute on Judicial Systems (IRSIG-CNR), http://astrea.cineca.it/

  2. Carreras, X., Marquez, L.: Introduction to the conll-2005 shared task: Semantic role labeling. In: Proc. of CoNLL, Ann Arbor, Michigan, pp. 152–164 (2005)

    Google Scholar 

  3. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. J. Mach. Learn. Res. 3, 1083–1106 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In: Proceedings of ACL 2004, Barcelona, Spain, pp. 423–429 (2004)

    Google Scholar 

  5. Bunescu, R., Mooney, R.: Subsequence kernels for relation extraction. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems 18, pp. 171–178. MIT Press, Cambridge (2006)

    Google Scholar 

  6. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  7. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  8. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string kernels. Journal of Machine Learning Research 2 (2002)

    Google Scholar 

  9. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  10. Moschitti, A., Pighin, D., Basili, R.: Tree Kernels for Semantic Role Labeling. Computational Linguistics Special Issue on Semantic Role Labeling (3) (2008)

    Google Scholar 

  11. Moschitti, A., Cosmin, A.B.: A semantic kernel for predicate argument classification. In: CoNLL 2004, Boston, MA, USA (2004)

    Google Scholar 

  12. Giuglea, A.M., Moschitti, A.: Semantic Role Labeling via Framenet, Verbnet and Propbank. In: Proceedings of ACL 2006, Sydney, Australia (2006)

    Google Scholar 

  13. Bloehdorn, S., Moschitti, A.: Structure and semantics for expressive text kernels. In: Proc. of CIKM 2007 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Basili, R., Giannone, C., Del Vescovo, C., Moschitti, A., Naggar, P. (2009). Kernel-Based Learning for Domain-Specific Relation Extraction. In: Serra, R., Cucchiara, R. (eds) AI*IA 2009: Emergent Perspectives in Artificial Intelligence. AI*IA 2009. Lecture Notes in Computer Science(), vol 5883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10291-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10291-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10290-5

  • Online ISBN: 978-3-642-10291-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics