iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-04238-6_21
Max-ASP: Maximum Satisfiability of Answer Set Programs | SpringerLink
Skip to main content

Max-ASP: Maximum Satisfiability of Answer Set Programs

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5753))

Abstract

This paper studies answer set programming (ASP) in the generalized context of soft constraints and optimization criteria. In analogy to the well-known Max-SAT problem of maximum satisfiability of propositional formulas, we introduce the problems of unweighted and weighted Max-ASP. Given a normal logic program P, in Max-ASP the goal is to find so called optimal Max-ASP models, which minimize the total cost of unsatisfied rules in P and are at the same time answer sets for the set of satisfied rules in P. Inference rules for Max-ASP are developed, resulting in a complete branch-and-bound algorithm for finding optimal models for weighted Max-ASP instances. Differences between the Max-ASP problem and earlier proposed related concepts in the context of ASP are also discussed. Furthermore, translations between Max-ASP and Max-SAT are studied.

This work is financially supported by Academy of Finland under the project Methods for Constructing and Solving Large Constraint Models (grant #122399).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debugging answer-set programs. In: Proc. AAAI 2008, pp. 448–453. AAAI Press, Menlo Park (2008)

    Google Scholar 

  2. Li, C., Manyá, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfiability. IOS Press, Amsterdam (2009)

    Google Scholar 

  3. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving. Artificial Intelligence 172(2-3), 204–233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonet, M., Levy, J., Manyà, F.: Resolution for Max-SAT. Artificial Intelligence 171(8-9), 606–618 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11–25. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE Transactions on Knowledge and Data Engineering 12(5), 845–860 (2000)

    Article  Google Scholar 

  7. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brewka, G., Niemelä, I., Truszczynski, M.: Answer set optimization. In: Proc. IJCAI 2003, pp. 867–872. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  9. Gebser, M., Gharib, M., Mercer, R., Schaub, T.: Monotonic answer set programming. Journal of Logic and Computation (in press, 2009), doi:10.1093/logcom/exn040

    Google Scholar 

  10. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. ICLP/SLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)

    Google Scholar 

  11. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1995)

    MATH  Google Scholar 

  12. Clark, K.: Negation as failure. In: Readings in nonmonotonic reasoning, pp. 311–325. Morgan Kaufmann, San Francisco (1987)

    Google Scholar 

  13. Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of Methods of Logic in Computer Science 1, 51–60 (1994)

    Google Scholar 

  14. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oikarinen, E., Järvisalo, M. (2009). Max-ASP: Maximum Satisfiability of Answer Set Programs. In: Erdem, E., Lin, F., Schaub, T. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2009. Lecture Notes in Computer Science(), vol 5753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04238-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04238-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04237-9

  • Online ISBN: 978-3-642-04238-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics