iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-02256-2_22
On Semi-implicit Splitting Schemes for the Beltrami Color Flow | SpringerLink
Skip to main content

On Semi-implicit Splitting Schemes for the Beltrami Color Flow

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

The Beltrami flow is an efficient non-linear filter, that was shown to be effective for color image processing. The corresponding anisotropic diffusion operator strongly couples the spectral components. Usually, this flow is implemented by explicit schemes, that are stable only for small time steps and therefore require many iterations. In this paper we introduce a semi-implicit scheme based on the locally one-dimensional (LOD) and additive operator splitting (AOS) schemes for implementing the anisotropic Beltrami operator. The mixed spatial derivatives are treated explicitly, while the non-mixed derivatives are approximated in a semi-implicit manner. Numerical experiments demonstrate the stability of the proposed scheme. Accuracy and efficiency of the splitting schemes are tested in applications such as the scale-space analysis and denoising. In order to further accelerate the convergence of the numerical scheme, the reduced rank extrapolation (RRE) vector extrapolation technique is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rosman, G., Dascal, L., Kimmel, R., Sidi, A.: Efficient beltrami image filtering via vector extrapolation methods. SIAM J. Imag. Sci. (2008) (submitted)

    Google Scholar 

  2. Mešina, M.: Convergence acceleration for the iterative solution of the equations X = AX + f. Comp. Meth. Appl. Mech. Eng. 10, 165–173 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eddy, R.: Extrapolating to the limit of a vector sequence. In: Wang, P. (ed.) Information Linkage Between Applied Mathematics and Industry, New York, pp. 387–396. Academic Press, London (1979)

    Chapter  Google Scholar 

  4. Spira, A., Kimmel, R., Sochen, N.A.: A short-time Beltrami kernel for smoothing images and manifolds. IEEE Trans. Image Process. 16(6), 1628–1636 (2007)

    Article  MathSciNet  Google Scholar 

  5. Smith, S.M., Brady, J.: Susan - a new approach to low level image processing. Intl. J. of Comp. Vision 23, 45–78 (1997)

    Article  Google Scholar 

  6. Aurich, V., Weule, J.: Non-linear gaussian filters performing edge preserving diffusion. In: Mustererkennung 1995, 17. DAGM-Symposium, London, UK, pp. 538–545. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  7. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of IEEE International Conference on Computer Vision, pp. 836–846 (1998)

    Google Scholar 

  8. Sochen, N., Kimmel, R., Bruckstein, A.M.: Diffusions and confusions in signal and image processing. J. of Math. Imag. and Vision 14(3), 195–209 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elad, M.: On the bilateral filter and ways to improve it. IEEE Trans. Image Process. 11(10), 1141–1151 (2002)

    Article  MathSciNet  Google Scholar 

  10. Barash, D.: A fundamental relationship between bilateral filtering, adaptive smoothing and the nonlinear diffusion equation. IEEE Trans. Image Process. 24(6), 844–847 (2002)

    Google Scholar 

  11. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. SIAM Interdisciplinary Journal 4, 490–530 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Lu, T., Neittaanmaki, P., Tai, X.C.: A parallel splitting up method and its application to Navier-Stokes equations. Applied Mathematics Letters 4(2), 25–29 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lu, T., Neittaanmaki, P., Tai, X.C.: A parallel splitting up method for partial differential equations and its application to Navier-Stokes equations. RAIRO Mathematical Modelling and Numerical Analysis 26(6), 673–708 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Weickert, J., Romeny, B.M.T.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998)

    Article  Google Scholar 

  15. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. Journal Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yanenko, N.N.: The method of fractional steps. The solution of problems of mathematical physics in several variables. Springer-Verlag, New York (1971)

    MATH  Google Scholar 

  17. Barash, D., Schlick, T., Israeli, M., Kimmel, R.: Multiplicative operator splittings in nonlinear diffusion: from spatial splitting to multiple timesteps. J. of Math. Imag. and Vision 19(16), 33–48 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kimmel, R., Malladi, R., Sochen, N.: Images as embedding maps and minimal surfaces: Movies, color, texture, and volumetric medical images. Intl. J. of Comp. Vision 39(2), 111–129 (2000)

    Article  MATH  Google Scholar 

  19. Sochen, N., Kimmel, R., Maladi, R.: From high energy physics to low level vision. In: ter Haar Romeny, B.M., Florack, L.M.J., Viergever, M.A. (eds.) Scale-Space 1997. LNCS, vol. 1252, pp. 236–247. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  20. Sochen, N., Kimmel, R., Maladi, R.: A general framework for low level vision. IEEE Trans. Image Process. 7, 310–318 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yezzi, A.J.: Modified curvature motion for image smoothing and enhancement. IEEE Trans. Image Process. 7(3), 345–352 (1998)

    Article  MathSciNet  Google Scholar 

  22. Polyakov, A.M.: Quantum geometry of bosonic strings. Physics Letters 103 B, 207–210 (1981)

    Article  MathSciNet  Google Scholar 

  23. Rudin, L., Osher, S., Fatemi, E.: Non-linear total variation based noise removal algorithms. Physica D Letters 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  24. Yanenko, N.N.: About implicit difference methods of the calculation of the multidimensional equation of thermal conductivity. In: Proceedings of VUZ. Series of Mathematics, vol. 23(4), pp. 148–157 (1961)

    Google Scholar 

  25. Andreev, V.B.: Alternating direction methods for parabolic equations in two space dimensions with mixed derivatives. Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki 7(2), 312–321 (1967)

    Google Scholar 

  26. Mckee, S., Mitchell, A.R.: Alternating direction methods for parabolic equations in three space dimensions with mixed derivatives. The Computer Journal 14(3), 25–30 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weickert, J.: Coherence-enhancing diffusion filtering. Intl. J. of Comp. Vision 31(2/3), 111–127 (1999)

    Article  Google Scholar 

  28. Dascal, L., Rosman, G., Kimmel, R.: Efficient Beltrami filtering of color images via vector extrapolation. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 92–103. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dascal, L., Rosman, G., Tai, XC., Kimmel, R. (2009). On Semi-implicit Splitting Schemes for the Beltrami Color Flow. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics