Abstract
Ontology alignment is an important task for information integration systems that can make different resources, described by various and heterogeneous ontologies, interoperate. However very large ontologies have been built in some domains such as medicine or agronomy and the challenge now lays in scaling up alignment techniques that often perform complex tasks. In this paper, we propose two partitioning methods which have been designed to take the alignment objective into account in the partitioning process as soon as possible. These methods transform the two ontologies to be aligned into two sets of blocks of a limited size. Furthermore, the elements of the two ontologies that might be aligned are grouped in a minimal set of blocks and the comparison is then enacted upon these blocks. Results of experiments performed by the two methods on various pairs of ontologies are promising.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. The Scientific American, 34–43 (2001)
Grau, B.C., Parsia, B., Sirin, E., Kalyanpur, A.: Automatic Partitioning of OWL Ontologies Using e-connections. In: DL 2005, Proceedings of the 18th International Workshop on Description Logics (2005)
Guha, S., Rastogi, R., Shim, K.: ROCK: A Robust Clustering Algorithm for Categorical Attributes. Information Systems 25(5), 345–366 (2000)
Haase, P., Honavar, V., Kutz, O., Sure, Y., Tamilin, A. (eds.): Proceedings of the 1st International Workshop on Modular Ontologies, WoMO 2006, co-located with the International Semantic Web Conference, ISWC 2006. CEUR Workshop Proceedings, vol. 232 (2007), CEUR-WS.org
Hamdi, F., Zargayouna, H., Safar, B., Reynaud, C.: TaxoMap in the OAEI 2008 Alignment Contest. In: Proceedings of the 3th International Workshop on Ontology Matching, OM 2008 (2008)
Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: A divide-and-conquer approach. Data Knowl. Eng. 67(1), 140–160 (2008)
Hu, W., Zhao, Y., Qu, Y.: Partition-Based Block Matching of Large Class Hierarchies. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 72–83. Springer, Heidelberg (2006)
Nagy, M., Vargas-Vera, M., Stolarski, P., Motta, E.: DSSim Results for OAEI. In: Proceedings of the 3th International Workshop on Ontology Matching, OM 2008 (2008)
Noy, N.F., Musen, M.A.: PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment. In: AAAI/IAAI, pp. 450–455 (2000)
Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. Journal on Data Semantics IV, 146–171
Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal: Very Large Data Bases 10(4), 334–350 (2001)
Reynaud, C., Safar, B.: Techniques structurelles d’alignement pour portails web. RNTI, Revue des Nouvelles Technologies de l’Information (2007)
Stuckenschmidt, H., Klein, M.: Structured-Based Partitioning of Large Concept Hierarchies. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 289–303. Springer, Heidelberg (2004)
Wang, P., Xu, B.: Lily: Ontology Alignment Results for OAEI 2008. In: Proceedings of the 3th International Workshop on Ontology Matching, OM 2008 (2008)
Wang, Z., Wang, Y., Zhang, S., Shen, G., Du, T.: Matching Large Scale Ontology Effectively. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 99–105. Springer, Heidelberg (2006)
Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proc. 32nd Annual Meeting of the Association for Computational Linguistics (ACL), pp. 133–138 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Hamdi, F., Safar, B., Reynaud, C., Zargayouna, H. (2010). Alignment-Based Partitioning of Large-Scale Ontologies. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand, H. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00580-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-00580-0_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00579-4
Online ISBN: 978-3-642-00580-0
eBook Packages: EngineeringEngineering (R0)