iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-00202-1_2
Foundations of Exact Rounding | SpringerLink
Skip to main content

Foundations of Exact Rounding

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5431))

Included in the following conference series:

Abstract

Exact rounding of numbers and functions is a fundamental computational problem. This paper introduces the mathematical and computational foundations for exact rounding. We show that all the elementary functions in ISO standard (ISO/IEC 10967) for Language Independent Arithmetic can be exactly rounded, in any format, and to any precision. Moreover, a priori complexity bounds can be given for these rounding problems. Our conclusions are derived from results in transcendental number theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brent, R.P.: Fast multiple-precision evaluation of elementary functions. J. of the ACM 23, 242–251 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brönnimann, H., Burnikel, C., Pion, S.: Interval arithmetic yields efficient dynamic filters for computational geometry. Discrete Applied Mathematics 109(1-2), 25–47 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Defour, D., Hanrot, G., Lefèvre, V., Muller, J.-M., Revol, N., Zimmermann, P.: Proposal for a standardization of mathematical function implementation in floating-point arithmetic. Numerical Algorithms 37(1-4), 367–375 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Du, Z.: Guaranteed Precision for Transcendental and Algebraic Computation made Easy. Ph.D. thesis, New York University, Department of Computer Science, Courant Institute (May 2006), http://cs.nyu.edu/exact/doc/

  5. Du, Z., Eleftheriou, M., Moreira, J., Yap, C.: Hypergeometric functions in exact geometric computation. In: Brattka, V., Schoeder, M., Weihrauch, K. (eds.) Proc. 5th Workshop on Computability and Complexity in Analysis, Malaga, Spain, July 12–13. Electronic Notes in Theoretical Computer Science, vol. 66(1), pp. 55–66 (2002), http://www.elsevier.nl/locate/entcs/volume66.html

  6. Du, Z., Yap, C.: Uniform complexity of approximating hypergeometric functions with absolute error. In: Pae, S., Park, H. (eds.) Proc. 7th Asian Symp. on Computer Math. (ASCM 2005), pp. 246–249 (2006)

    Google Scholar 

  7. Fel’dman, N., Nesterenko, Y.V.: Number Theory IV: Transcendental Numbers. Encyclopaedia of Mathematical Sciences, vol. 44. Springer, Berlin (1998); translated from Russian by N. Koblitz

    MATH  Google Scholar 

  8. Fousse, L., Hanrot, G., Lefévre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007)

    Article  MathSciNet  Google Scholar 

  9. Gal, S., Bachelis, B.: An accurate elementary mathematical library for the IEEE floating point standard. ACM Trans. on Math. Software 17(1), 26–45 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys 23(1), 5–48 (1991)

    Article  Google Scholar 

  11. IEEE. ANSI/IEEE Standard 754-1985 for binary floating-point arithmetic, The Institute of Electrical and Electronic Engineers Inc., New York (1985)

    Google Scholar 

  12. Ko, K.-I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston (1991)

    Google Scholar 

  13. Lefévre, V., Muller, J.-M., Tisserand, A.: Towards correctly rounded transcendentals. IEEE Trans. Computers 47(11), 1235–1243 (1998)

    Article  Google Scholar 

  14. Lefèvre, V., Stehlé, D., Zimmermann, P.: Worst cases for the exponential function in the IEEE 754r decimal64 format. In: Hertling, P., Hoffmann, C.M., Luther, W., Revol, N. (eds.) Real Number Algorithms. LNCS, vol. 5045, pp. 114–126. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Li, C., Pion, S., Yap, C.: Recent progress in Exact Geometric Computation. J. of Logic and Algebraic Programming 64(1), 85–111 (2004); special issue on “Practical Development of Exact Real Number Computation”

    Article  MathSciNet  MATH  Google Scholar 

  16. Muller, J.-M.: Elementary Functions: Algorithms and Implementation. Birkhäuser, Boston (1997)

    Google Scholar 

  17. Nesterenko, Y., Waldschmidt, M.: On the approximation of the values of exponential function and logarithm by algebraic numbers. Mat. Zapiski 2, 23–42 (1996); Diophantine Approximations, Proc. of papers dedicated to the memory of Prof. N.I. Feldman, Moscow, http://arxiv.org/abs/math.NT/0002047

    Google Scholar 

  18. I. S. O. ISO/IEC 10967-2-2001 for Language Independne Arithmetic: Elementary Numerical Functions. International Standards Organisation, Geneva, Switzerland (2001)

    Google Scholar 

  19. Richardson, D.: How to recognize zero. J. of Symbolic Computation 24, 627–645 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sharma, V., Du, Z., Yap, C.: Robust approximate zeros. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 874–887. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Yap, C.K.: Fundamental Problems of Algorithmic Algebra. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  22. Yap, C.K.: On guaranteed accuracy computation. In: Chen, F., Wang, D. (eds.) Geometric Computation, ch. 12, pp. 322–373. World Scientific Publishing Co., Singapore (2004)

    Chapter  Google Scholar 

  23. Yap, C.K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., ch. 41, pp. 927–952. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

  24. Yap, C.K.: Theory of real computation according to EGC. In: Hertling, P., Hoffmann, C.M., Luther, W., Revol, N. (eds.) Real Number Algorithms. LNCS, vol. 5045, pp. 193–237. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Ziv, A.: Fast evaluation of elementary mathematical functions with correctly rounded last bit. ACM Trans. on Math. Software 17(3), 410–423 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yap, C.K., Yu, J. (2009). Foundations of Exact Rounding. In: Das, S., Uehara, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2009. Lecture Notes in Computer Science, vol 5431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00202-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00202-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00201-4

  • Online ISBN: 978-3-642-00202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics