Abstract
We place our focus on the gap between treewidth’s success in producing fixed-parameter polynomial algorithms for hard graph problems, and specifically Hamiltonian Circuit and Max Cut, and the failure of its directed variants (directed tree-width [9], DAG-width [11] and kelly-width [8]) to replicate it in the realm of digraphs. We answer the question of why this gap exists by giving two hardness results: we show that Directed Hamiltonian Circuit is W[2]-hard when the parameter is the width of the input graph, for any of these widths, and that Max Di Cut remains NP-hard even when restricted to DAGs, which have the minimum possible width under all these definitions. Our results also apply to directed pathwidth.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs and Combinatorics 22(2), 161–172 (2006)
Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997)
Bodlaender, H.L.: Treewidth: Characterizations, applications, and computations. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg (2006)
Bodlaender, H.L.: Treewidth: Structure and algorithms. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 11–25. Springer, Heidelberg (2007)
Courcelle, B.: The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs. Inf. Comput. 85(1), 12–75 (1990)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
Flum, J., Grohe, M.: Parameterized Complexity Theory, 1st edn. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006)
Hunter, P., Kreutzer, S.: Digraph measures: Kelly decompositions, games, and orderings. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 637–644. SIAM, Philadelphia (2007)
Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J. Comb. Theory, Ser. B 82(1), 138–154 (2001)
Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, USA (2006)
Obdrzálek, J.: Dag-width: connectivity measure for directed graphs. In: SODA, pp. 814–821. ACM Press, New York (2006)
Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)
Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic Aspects of Tree-Width. J. Algorithms 7(3), 309–322 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lampis, M., Kaouri, G., Mitsou, V. (2008). On the Algorithmic Effectiveness of Digraph Decompositions and Complexity Measures. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-92182-0_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92181-3
Online ISBN: 978-3-540-92182-0
eBook Packages: Computer ScienceComputer Science (R0)