iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-92182-0_22
On the Algorithmic Effectiveness of Digraph Decompositions and Complexity Measures | SpringerLink
Skip to main content

On the Algorithmic Effectiveness of Digraph Decompositions and Complexity Measures

  • Conference paper
Algorithms and Computation (ISAAC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5369))

Included in the following conference series:

Abstract

We place our focus on the gap between treewidth’s success in producing fixed-parameter polynomial algorithms for hard graph problems, and specifically Hamiltonian Circuit and Max Cut, and the failure of its directed variants (directed tree-width [9], DAG-width [11] and kelly-width [8]) to replicate it in the realm of digraphs. We answer the question of why this gap exists by giving two hardness results: we show that Directed Hamiltonian Circuit is W[2]-hard when the parameter is the width of the input graph, for any of these widths, and that Max Di Cut remains NP-hard even when restricted to DAGs, which have the minimum possible width under all these definitions. Our results also apply to directed pathwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs and Combinatorics 22(2), 161–172 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Bodlaender, H.L.: Treewidth: Characterizations, applications, and computations. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Bodlaender, H.L.: Treewidth: Structure and algorithms. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 11–25. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Courcelle, B.: The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  7. Flum, J., Grohe, M.: Parameterized Complexity Theory, 1st edn. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  8. Hunter, P., Kreutzer, S.: Digraph measures: Kelly decompositions, games, and orderings. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 637–644. SIAM, Philadelphia (2007)

    Google Scholar 

  9. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J. Comb. Theory, Ser. B 82(1), 138–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, USA (2006)

    Book  MATH  Google Scholar 

  11. Obdrzálek, J.: Dag-width: connectivity measure for directed graphs. In: SODA, pp. 814–821. ACM Press, New York (2006)

    Chapter  Google Scholar 

  12. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic Aspects of Tree-Width. J. Algorithms 7(3), 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lampis, M., Kaouri, G., Mitsou, V. (2008). On the Algorithmic Effectiveness of Digraph Decompositions and Complexity Measures. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92182-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92181-3

  • Online ISBN: 978-3-540-92182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics