Abstract
We analyze and compare four different evolvable hardware approaches for classification tasks: An approach based on a programmable logic array architecture, an approach based on two-phase incremental evolution, a generic logic architecture with automatic definition of building blocks, and a specialized coarse-grained architecture with pre-defined building blocks. We base the comparison on a common data set and report on classification accuracy and training effort. The results show that classification accuracy can be increased by using modular, specialized classifier architectures. Furthermore, function level evolution, either with predefined functions derived from domain-specific knowledge or with functions that are automatically defined during evolution, also gives higher accuracy. Incremental and function level evolution reduce the search space and thus shortens the training effort.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Higuchi, T., Iwata, M., Kajitani, I., Iba, H., Hirao, Y., Manderick, B., Furuya, T.: Evolvable Hardware and its Applications to Pattern Recognition and Fault-Tolerant Systems. In: Sanchez, E., Tomassini, M. (eds.) Towards Evolvable Hardware 1995. LNCS, vol. 1062, pp. 118–135. Springer, Heidelberg (1996)
Kajitani, I., Hoshino, T., Nishikawa, D., Yokoi, H., Nakaya, S., Yamauchi, T., Inuo, T., Kajihara, N., Iwata, M., Keymeulen, D., Higuchi, T.: A Gate-Level EHW Chip: Implementing GA Operations and Reconfigurable Hardware on a Single LSI. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 1–12. Springer, Heidelberg (1998)
Yasunaga, M., Nakamura, T., Yoshihara, I.: Evolvable Sonar Spectrum Discrimination Chip Designed by Genetic Algorithm. In: Systems, Man and Cybernetics, vol. 5, pp. 585–590. IEEE Computer Society Press, Los Alamitos (1999)
Yasunaga, M., Nakamura, T., Yoshihara, I., Kim, J.H.: Genetic Algorithm-based Design Methodology for Pattern Recognition Hardware. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 264–273. Springer, Heidelberg (2000)
Glette, K., Kaufmann, P., Gruber, T., Torresen, J., Sick, B., Platzner, M.: Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control. In: 3rd NASA/ESA Conference on Adaptive Hardware and Systems (AHS) (2008)
Kajitani, I., Hoshino, T., Iwata, M., Higuchi, T.: Variable Length Chromosome GA for Evolvable Hardware. In: International Conference on Evolutionary Computation (ICEC), pp. 443–447. IEEE, Los Alamitos (1996)
Murakawa, M., Yoshizawa, S., Kajitani, I., Furuya, T., Iwata, M., Higuchi, T.: Hardware Evolution at Function Level. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 62–71. Springer, Heidelberg (1996)
Kajitani, I., Sekita, I., Otsu, N., Higuchi, T.: Improvements to the Action Decision Rate for a Multi-Function Prosthetic Hand. In: Proceedings 1st International Symposium on Measurement, Analysis and Modeling of Human Functions (ISHF), pp. 84–89 (2001)
Torresen, J.: Two-Step Incremental Evolution of a Digital Logic Gate Based Prosthetic Hand Controller. In: Liu, Y., Tanaka, K., Iwata, M., Higuchi, T., Yasunaga, M. (eds.) ICES 2001. LNCS, vol. 2210, pp. 1–13. Springer, Heidelberg (2001)
Glette, K., Torresen, J., Yasunaga, M.: An Online EHW Pattern Recognition System Applied to Face Image Recognition. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 271–280. Springer, Heidelberg (2007)
Glette, K., Torresen, J., Yasunaga, M.: Online Evolution for a High-Speed Image Recognition System Implemented On a Virtex-II Pro FPGA. In: Proceedings 2nd NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 463–470. IEEE Computer Society Press, Los Alamitos (2007)
Miller, J., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)
Walker, J.A., Miller, J.F.: Evolution and Acquisition of Modules in Cartesian Genetic Programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S.M., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 187–197. Springer, Heidelberg (2004)
Ho, T.K.: Random Decision Forests. In: Proceedings 3rd International Conference on Document Analysis and Recognition (ICDAR), vol. 1, p. 278. IEEE, Los Alamitos (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Glette, K., Torresen, J., Kaufmann, P., Platzner, M. (2008). A Comparison of Evolvable Hardware Architectures for Classification Tasks. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds) Evolvable Systems: From Biology to Hardware. ICES 2008. Lecture Notes in Computer Science, vol 5216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85857-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-85857-7_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85856-0
Online ISBN: 978-3-540-85857-7
eBook Packages: Computer ScienceComputer Science (R0)