Abstract
Data Integration systems are used to integrate heterogeneous data sources in a single view. Recent works on Business Intelligence do highlight the need of on-time, trustable and sound data access systems. This require for method based on a semi-automatic procedure that can provide reliable results. A crucial factor for any semi automatic algorithm is based on the matching operators implemented. Different categories of matching operators carry different semantics. For this reason combining them in a single algorithm is a non trivial process that have to take into account a variety of options.
This paper proposes a solution based on a categorization of marching operators that allow to group similar attributes on a semantic rich form. The validation of the system have demonstrate how the aggregation of matching operators is not a trivial problem because traditional aggregators produce a compensation effect on operators that can have very different informative values. For this reason this work is now evolving thought the implementation of aggregators based on logic theories, able to distinguish different properties of matching operators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized views, pp. 254–263 (1998)
Aczel, J.: On Weighted synthesis of judgments. Aequationes Math. 27, 288–307 (1984)
Braun, P., Lotzbeyer, H., Schatz, B., Slotosch, O.: Consistent integration of formal methods, pp. 48–62 (2000)
Cui, Z., Damiani, E., Leida, M.: Benefits of Ontologies in Real Time Data Access. In: Proceedings IEEE/IES Conference on Digital Ecosystems and Technologies (2007)
Bobillo, F., Straccia, U.: Fuzzydl: An expressive fuzzy description logic reasoner. In: 2008 International Conference on Fuzzy Systems (FUZZ 2008). IEEE Computer Society, Los Alamitos (2008)
Ceravolo, P., Cui, Z., Gusmini, A., Damiani, E., Leida, M.: An fca-based mapping generator. In: 12th IEEE Conference on Emerging Technologies and Factory Automation (2007)
Ceravolo, P., Damiani, E., Gusmini, A., Leida, M.: Using ontologies to map concept relations in a data integration system. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1285–1293. Springer, Heidelberg (2007)
Corcho, O., Gomez Perez, A.: Evaluating knowledge representation and reasoning capabilities of ontology specification languages. In: Proc. of ECAI 2000 Workshop on Applications of Ontologies and Problem-Solving Methods (2000)
Avigdor Gal. Managing uncertainty in schema matching with top-k schema mappings. pp. 90–114 (2006)
Gal, A.: Why is schema matching tough and what can we do about it? SIGMOD Rec. 35(4), 2–5 (2006)
Inmon, W.H.: Building the data warehouse. QED Information Sciences, Inc., Wellesley (1992)
Shvaiko, P., Euzenat, J.: Ontology matching. Springer, Heidelberg (2007)
Duschka, O.M., Genesereth, M.R., Levy, A.Y.: Recursive query plans for data integration. Journal of Logic Programming 43(1), 49–73 (2000)
Grahne, G., Mendelzon, A.O.: Tableau techniques for querying information sources through global schemas. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 332–347. Springer, Heidelberg (1998)
Hakimpour, F., Geppert, A.: Global schema generation using formal ontologies (2002)
Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal: Very Large Data Bases 10(4), 270–294 (2001)
Euzenat, J., et al.: Results of the Ontology Alignment Evaluation Initiative 2006. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)
Lenzerini, M.: Data integration is harder than you thought. In: CooplS 2001: Proceedings of the 9th International Conference on Cooperative Information Systems, London, UK, pp. 22–26. Springer, Heidelberg (2001)
Lenzerini, M.: Data Integration: A Theoretical Perspective. In: PODS 2002, pp. 233–246 (2002)
Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)
Parent, C., Spaccapietra, S.: Issues and approaches of database integration. Commun. ACM 41(5es), 166–178 (1998)
OWL - Web Ontology Language defintion, http://www.w3.org/TR/owl-features/
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ceravolo, P., Cui, Z., Damiani, E., Gusmini, A., Leida, M. (2008). ODDI: Ontology-Driven Data Integration. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85563-7_66
Download citation
DOI: https://doi.org/10.1007/978-3-540-85563-7_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85562-0
Online ISBN: 978-3-540-85563-7
eBook Packages: Computer ScienceComputer Science (R0)