iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-85563-7_66
ODDI: Ontology-Driven Data Integration | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5177))

  • 1981 Accesses

Abstract

Data Integration systems are used to integrate heterogeneous data sources in a single view. Recent works on Business Intelligence do highlight the need of on-time, trustable and sound data access systems. This require for method based on a semi-automatic procedure that can provide reliable results. A crucial factor for any semi automatic algorithm is based on the matching operators implemented. Different categories of matching operators carry different semantics. For this reason combining them in a single algorithm is a non trivial process that have to take into account a variety of options.

This paper proposes a solution based on a categorization of marching operators that allow to group similar attributes on a semantic rich form. The validation of the system have demonstrate how the aggregation of matching operators is not a trivial problem because traditional aggregators produce a compensation effect on operators that can have very different informative values. For this reason this work is now evolving thought the implementation of aggregators based on logic theories, able to distinguish different properties of matching operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized views, pp. 254–263 (1998)

    Google Scholar 

  2. Aczel, J.: On Weighted synthesis of judgments. Aequationes Math. 27, 288–307 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Braun, P., Lotzbeyer, H., Schatz, B., Slotosch, O.: Consistent integration of formal methods, pp. 48–62 (2000)

    Google Scholar 

  4. Cui, Z., Damiani, E., Leida, M.: Benefits of Ontologies in Real Time Data Access. In: Proceedings IEEE/IES Conference on Digital Ecosystems and Technologies (2007)

    Google Scholar 

  5. Bobillo, F., Straccia, U.: Fuzzydl: An expressive fuzzy description logic reasoner. In: 2008 International Conference on Fuzzy Systems (FUZZ 2008). IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  6. Ceravolo, P., Cui, Z., Gusmini, A., Damiani, E., Leida, M.: An fca-based mapping generator. In: 12th IEEE Conference on Emerging Technologies and Factory Automation (2007)

    Google Scholar 

  7. Ceravolo, P., Damiani, E., Gusmini, A., Leida, M.: Using ontologies to map concept relations in a data integration system. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1285–1293. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Corcho, O., Gomez Perez, A.: Evaluating knowledge representation and reasoning capabilities of ontology specification languages. In: Proc. of ECAI 2000 Workshop on Applications of Ontologies and Problem-Solving Methods (2000)

    Google Scholar 

  9. Avigdor Gal. Managing uncertainty in schema matching with top-k schema mappings. pp. 90–114 (2006)

    Google Scholar 

  10. Gal, A.: Why is schema matching tough and what can we do about it? SIGMOD Rec. 35(4), 2–5 (2006)

    Article  Google Scholar 

  11. Inmon, W.H.: Building the data warehouse. QED Information Sciences, Inc., Wellesley (1992)

    Google Scholar 

  12. Shvaiko, P., Euzenat, J.: Ontology matching. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  13. Duschka, O.M., Genesereth, M.R., Levy, A.Y.: Recursive query plans for data integration. Journal of Logic Programming 43(1), 49–73 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grahne, G., Mendelzon, A.O.: Tableau techniques for querying information sources through global schemas. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 332–347. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Hakimpour, F., Geppert, A.: Global schema generation using formal ontologies (2002)

    Google Scholar 

  16. Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal: Very Large Data Bases 10(4), 270–294 (2001)

    Article  MATH  Google Scholar 

  17. Euzenat, J., et al.: Results of the Ontology Alignment Evaluation Initiative 2006. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)

    Google Scholar 

  18. Lenzerini, M.: Data integration is harder than you thought. In: CooplS 2001: Proceedings of the 9th International Conference on Cooperative Information Systems, London, UK, pp. 22–26. Springer, Heidelberg (2001)

    Google Scholar 

  19. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: PODS 2002, pp. 233–246 (2002)

    Google Scholar 

  20. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)

    Article  MATH  Google Scholar 

  21. Parent, C., Spaccapietra, S.: Issues and approaches of database integration. Commun. ACM 41(5es), 166–178 (1998)

    Article  Google Scholar 

  22. OWL - Web Ontology Language defintion, http://www.w3.org/TR/owl-features/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ignac Lovrek Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ceravolo, P., Cui, Z., Damiani, E., Gusmini, A., Leida, M. (2008). ODDI: Ontology-Driven Data Integration. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85563-7_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85563-7_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85562-0

  • Online ISBN: 978-3-540-85563-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics