iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-78246-9_8
Model Selection in Mixture Regression Analysis–A Monte Carlo Simulation Study | SpringerLink
Skip to main content

Model Selection in Mixture Regression Analysis–A Monte Carlo Simulation Study

  • Conference paper
Data Analysis, Machine Learning and Applications

Abstract

Mixture regression models have increasingly received attention from both marketing theory and practice, but the question of selecting the correct number of segments is still without a satisfactory answer. Various authors have considered this problem, but as most of available studies appeared in statistics literature, they aim to exemplify the effectiveness of new proposed measures, instead of revealing the performance of measures commonly available in statistical packages. The study investigates how well commonly used information criteria perform in mixture regression of normal data, with alternating sample sizes. In order to account for different levels of heterogeneity, this factor was analyzed for different mixture proportions. As existing studies only evaluate the criteria’s relative performance, the resulting success rates were compared with an outside criterion, so called chance models. The findings prove helpful for specific constellations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • AITKIN, M., RUBIN, D.B. (1985): Estimation and Hypothesis Testing in Finite Mixture Mod-els. Journal of the Royal Statistical Society, Series B (Methodological), 47 (1), 67-75.

    MATH  Google Scholar 

  • AKAIKE, H. (1973): Information Theory and an Extension of the Maximum Likelihood Prin-ciple. In B. N. Petrov; F. Csaki (Eds.), Second International Symposium on Information Theory (267-281). Budapest: Springer.

    Google Scholar 

  • ANDREWS, R., ANSARI, A., CURRIM, I. (2002): Hierarchical Bayes Versus Finite Mixture Conjoint Analysis Models: A Comparison of Fit, Prediction and Pathworth Recovery. Journal of Marketing Research, 39 (1), 87-98.

    Article  Google Scholar 

  • ANDREWS, R., CURRIM, I. (2003a): A Comparison of Segment Retention Criteria for Finite Mixture Logit Models. Journal of Marketing Research, 40 (3), 235-243.

    Article  Google Scholar 

  • ANDREWS, R., CURRIM, I. (2003b): Retention of Latent Segments in Regression-based Marketing Models. International Journal of Research in Marketing, 20 (4), 315-321.

    Article  Google Scholar 

  • BOZDOGAN, H. (1987): Model Selection and Akaike’s Information Criterion (AIC): The General Theory and its Analytical Extensions. Psychometrika, 52 (3), 346-370.

    Article  Google Scholar 

  • BOZDOGAN, H. (1994): Mixture-model Cluster Analysis using Model Selection Criteria and a new Information Measure of Complexity. Proceedings of the First US/Japan Confer-ence on Frontiers of Statistical Modelling: An Informational Approach, Vol. 2 (69-113). Boston: Kluwer Academic Publishing.

    Google Scholar 

  • DEMPSTER, A. P., LAIRD, N. M., RUBIN, D. B. (1977): Maximum Likelihood from In-complete Data via the EM-Algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 39 (1), 1-39.

    MATH  MathSciNet  Google Scholar 

  • DESARBO, W. S., DEGERATU, A., WEDEL, M., SAXTON, M. (2001): The Spatial Repre-sentation of Market Information. Marketing Science, 20 (4), 426-441.

    Article  Google Scholar 

  • GRÜN, B., LEISCH, F. (2006): Fitting Mixtures of Generalized Linear Regressions in R. Computational Statistics and Data Analysis, in press.

    Google Scholar 

  • HAHN, C., JOHNSON, M. D., HERRMANN, A., HUBER, F. (2002): Capturing Customer Heterogeneity using a Finite Mixture PLS Approach. Schmalenbach Business Review, 54 (3),243-269.

    Google Scholar 

  • HAWKINS, D. S., ALLEN, D. M., STROMBERG, A. J. (2001): Determining the Number of Components in Mixtures of Linear Models. Computational Statistics & Data Analysis, 38 (1),15-48.

    Article  MATH  MathSciNet  Google Scholar 

  • JEDIDI, K., JAGPAL, H. S., DESARBO, W. S. (1979): Finite-Mixture Structural Equation Models for Response-Based Segmentation and Unobserved Heterogeneity. Marketing Science, 16 (1), 39-59.

    Article  Google Scholar 

  • LEISCH, F. (2004): FlexMix: A General Framework for Finite Mixture Models and Latent Class Regresion in R. Journal of Statistical Software, 11 (8), 1-18.

    Google Scholar 

  • MANTRALA, M. K., SEETHARAMAN, P. B., KAUL, R., GOPALAKRISHNA, S., STAM, A. (2006): Optimal Pricing Strategies for an Automotive Aftermarket Retailer. Journal of Marketing Research, 43 (4), 588-604.

    Article  Google Scholar 

  • MCLACHLAN, G. J., PEEL, D. (2000): Finite Mixture Models, New York: Wiley.

    Book  MATH  Google Scholar 

  • MORRISON, D. G. (1969): On the Interpretation of Discriminant Analysis, Journal of Mar-keting Research, Vol. 6, 156-163.

    Article  MathSciNet  Google Scholar 

  • OLIVEIRA-BROCHADO, A., MARTINS, F. V. (2006): Examining the Segment Re-tention Problem for the "Group Satellite" Case. FEP Working Papers, 220. www.fep.up.pt/investigacao/workingpapers/06.07.04_WP220_brochadomartins.pdf

  • RISSANEN, J. (1978): Modelling by Shortest Data Description. Automatica, 14, 465-471.

    Article  MATH  Google Scholar 

  • SARSTEDT, M. (2006): Sample- and Segment-size specific Model Selection in Mix-ture Regression Analysis. Münchener Wirtschaftswissenschaftliche Beiträge, 08-2006. Available electronically from http://epub.ub.uni-muenchen.de/archive/00001252/01/2006_08_LMU_sarstedt.pdf

  • SCHWARZ, G. (1978): Estimating the Dimensions of a Model. The Annals of Statistics, 6 (2), 461-464.

    Article  MATH  MathSciNet  Google Scholar 

  • WEDEL, M., KAMAKURA, W. A. (1999): Market Segmentation. Conceptual and Method-ological Foundations (2nd ed.), Boston, Dordrecht & London: Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sarstedt, M., Schwaiger, M. (2008). Model Selection in Mixture Regression Analysis–A Monte Carlo Simulation Study. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds) Data Analysis, Machine Learning and Applications. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78246-9_8

Download citation

Publish with us

Policies and ethics