Abstract
In this position paper, we present an outline of the MACS approach to affordance-inspired robot control. An affordance, a concept from Ecological Psychology, denotes a specific relationship between an animal and its environment. Perceiving an affordance means perceiving an interaction possibility that is specific for the animal’s perception and action capabilities. Perceiving an affordance does not include appearance-based object recognition, but rather feature-based perception of object functions. The central hypothesis of MACS is that an affordance-inspired control architecture enables a robot to perceive more interaction possibilities than a traditional architecture that relies on appearance-based object recognition alone. We describe how the concept of affordances can be exploited for controlling a mobile robot with manipulation capabilities. Particularly, we will describe how affordance support can be built into robot perception, how learning mechanisms can generate affordance-like relations, how this affordance-related information is represented, and how it can be used by a planner for realizing goal-directed robot behavior. We present both the MACS demonstrator and simulator, and summarize development and experiments that have been performed so far. By interfacing perception and goal-directed action in terms of affordances, we will provide a new way for reasoning and learning to connect with reactive robot control. We will show the potential of this new methodology by going beyond navigation-like tasks towards goal-directed autonomous manipulation in our project demonstrators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin, Boston, MA (1979), also: Lawrence Erlbaum Associates, London (1986)
Norman, D.A.: The Psychology of Everyday Things. Basic Books, New York (1988)
Chemero, A.: An outline of a theory of affordances. Ecological Psychology 15(2), 181–195 (2003)
Steedman, M.: Formalizing affordance. In: Proceedings of the 24th Annual Meeting of the Cognitive Science Society. Conference Fairfax VA, August 2002, pp. 834–839. Lawrence Erlbaum, Washington D.C (2002)
Gibson, J.J.: The senses considered as perceptual systems. Houghton Mifflin, Boston (1966)
Warren, W.H.: Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology 105(5), 683–703 (1984)
Warren, W.H., Whang, S.: Visual guidance of walking through apertures: body-scaled information for affordances. Journal of Experimental Psychology 13(3), 371–383 (1987)
Mark, L.S.: Eyeheight-scaled information about affordances: A study of sitting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance 13(3), 361–370 (1987)
Gibson, E.J., Riccio, G., Schmuckler, M.A., Stoffregen, T.A., Rosenberg, D., Taromina, J.: Detection of the traversability of surfaces by crawling and walking infants. Journal of Experimental Psychology 13(4), 533–544 (1987)
Kinsella-Shaw, J.M., Shaw, B., Turvey, M.T.: Perceiving walk-on-able slopes. Ecological Psychology 4(4), 223–239 (1992)
Chemero, A.: What events are. Ecological Psychology 12(1), 37–42 (2000)
Oudejans, R., Michaels, C., van Dort, B., Frissen, E.: To cross or not to cross: The effect of locomotion on street-crossing behavior. Ecological Psychology 8(3), 259–267 (1996)
Arkin, R.C.: Behavior Based Robotics. MIT Press, Cambridge, MA (1998)
Duchon, A.P., Warren, W.H., Kaelbling, L.P.: Ecological robotics. Adaptive Behavior 6(3), 473–507 (1998)
Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)
Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2(1), 14–23 (1986)
Lyons, D., Arbib, M.: A formal model of computation for sensory-based robotics. IEEE Transactions on Robotics and Automation 5(3), 280–293 (1989)
Arkin, R.C., Balch, T.: AuRA: Principles and practice in review. Journal of Experimental and Theoretical Artificial Intelligence 9(2), 175–189 (1997)
Murphy, R.R.: Case studies of applying Gibson’s ecological approach to mobile robots. IEEE Transactions on Systems, Man, and Cybernetics 29(1), 105–111 (1999)
Norman, J.: Ecological psychology and the two visual systems: Not to worry! Ecological psychology 13(2), 135–145 (2001)
Gibson, E.J.: Perceptual learning in development: Some basic concepts. Ecological Psychology 12(4), 295–302 (2000)
Neisser, U.: Multiple systems: A new approach to cognitive theory. The European Journal of Cognitive Psychology 6, 225–241 (1994)
MacDorman, K.F.: Responding to affordances: Learning and projecting a sensorimotor mapping. In: Proc. of 2000 IEEE Int. Conf. on Robotics and Automation, San Fransisco, California, USA, pp. 3253–3259 (2000)
Connell, J.H.: SSS: a hybrid architecture applied to robot navigation. In: ICRA 1992. Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, France, May 12–14, 1992, vol. 3, pp. 2719–2724. IEEE Computer Society Press, Los Alamitos, CA (1992)
Cooper, R., Glasspool, D.W.: Learning action affordances and action schemas. In: French, R.M., Sougne, J.P. (eds.) Connectionist Models of Learning, Development and Evolution. Sixth Neural Computation and Psychology Workshop, London. Perspectives in Neural Computing, pp. 133–142. Springer, Heidelberg (2001)
Cos-Aguilera, I., Canamero, L., Hayes, G.M.: Using a SOFM to learn object affordances. In: Proceedings of the 5th Workshop of Physical Agents, Girona, Catalonia, Spain (March 2004)
Fitzgerald, P., Metta, G., Natale, L., Rao, S., Sandini, G.: Learning about objects through action – initial steps towards artificial cognition. In: ICRA. Proceedings of the 2003 IEEE International Conference on Robotics and Automation, pp. 3140–3145 (2003)
Stoytchev, A.: Toward learning the binding affordances of objects: A behavior-grounded approach. In: Proceedings of AAAI Symposium on Developmental Robotics, Stanford University (March 2005)
Cos-Aguilera, I., Canamero, L., Hayes, G.M.: Motivation-driven learning of object affordances: First experiments using a simulated khepera robot. In: ICCM 2003. Proceedings of the 9th International Conference in Cognitive Modelling, Bamberg, Germany, pp. 57–62 (April 2003)
Stoytchev, A.: Behavior-grounded representation of tool affordances. In: ICRA. Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 18–22, pp. 3071–3076 (2005)
Murphy, R.R., Arkin, R.C.: SFX: An architecture for action-oriented sensor fusion. In: IROS 1992. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC, pp. 1079–1086 (July 1992)
Rome, E., Şahin, E., Breithaupt, R., Irran, J., Kintzler, F., Paletta, L., Çakmak, M., Uğur, E., Üçoluk, G., Doğar, M.R., Rudol, P., Fritz, G., Dorffner, G., Doherty, P., Wzoreck, M., Surmann, H., Lörken, C.: Evaluation of existing control architectures for using affordances. Technical Report MACS/2/2.2 v1, Fraunhofer Institut für Intelligente Analyse- und Informationssysteme (IAIS), Sankt Augustin, Germany (2006)
Doherty, P., Merz, T., Rudol, P., Wzorek, M.: Tentative proposal for a formal theory of affordances; Tentative proposal for an affordance support architecture; Prototype: Affordance-based motion planner. Technical Report MACS/4/2.1 v1, Linköpings Universitet, IDA Group, Linköping, Sweden (2005)
Turvey, M.: Affordances and prospective control: An outline of the ontology. Ecological Psychology 4, 173–187 (1992)
Stoffregen, T.A.: Affordances are enough: Reply to chemero et al. Ecological Psychology 15(1), 29–36 (2003)
Steedman, M.: Plans, affordances, and combinatory grammar. Linguistics and Philosophy 25(5–6), 723–753 (2002)
Şahin, E., Çakmak, M., Doğar, M.R., Uğur, E., Üçoluk, G.: To afford or not to afford: A new formalization of affordances towards affordance-based robot control. Adaptive Behavior 15(4), 447–472 (2007)
Lörken., C.: Introducing affordances into robot task execution. In: Kühnberger, K.-U., König, P., Ludewig, P. (eds.) Publications of the Institute of Cognitive Science (PICS), vol. 2, University of Osnabrück, Osnabrück, Germany, (May 2007) ISSN 1610-5389.
MacDorman, K.F.: Grounding symbols through sensorimotor integration. Journal of the RSJ (The Robotics Society of Japan) 17(1), 5 (1999)
McDermott, D.: PDDL – The planning domain definition language. Technical report, Yale University (1998)
Lörken, C., Hertzberg, J.: A specification for a propositional planner and its interface to the MACS execution control module. Deliverable MACS/2/3.2, University of Osnabrück, Institute of Computer Science, Osnabrück, Germany (2007)
Neisser, U.: Cognition and Reality: Principles and Implications of Cognitive Psychology. W.H. Freeman and Co., New York (1976)
Faillenot, I., Toni, I., Decety, J., Grégoire, M.-C., Jeannerod, M.: Visual pathways for object-oriented action and object recognition: functional anatomy with pet. Cerebral Cortex 7(9), 77–85 (1997)
Fagg, A.H., Arbib, M.A.: Modeling parietal–premotor interactions in primate control of grasping. Neural Networks 11(7-8), 1277–1303 (1998)
Edwards, M.G., Humphreys, G.W., Castiello, U.: Motor facilitation following action observation: a behavioural study in prehensile action. Brain Cognition 53, 495–502 (2003)
Wheeler, D.S., Fagg, A.H., Grupen, R.A.: Learning prospective pick and place behavior. In: Proc. 2nd International Conference on Development and Learning, Cambridge, MA, June 2002, pp. 197–202. IEEE Computer Society Press, Los Alamitos (2002)
Stark, L., Bowyer, K.W.: Function-based recognition for multiple object categories. Image Understanding 59(10), 1–21 (1994)
Rivlin, E., Dickinson, S.J., Rosenfeld, A.: Recognition by functional parts. Computer Vision and Image Understanding: CVIU 62(2), 164–176 (1995)
Bogoni, L., Bajcsy, R.: Interactive recognition and representation of functionality. Computer Vision and Image Understanding: CVIU 62(2), 194–214 (1995)
Paletta, L., Fritz, G., Rome, E., Dorffner, G.: A computational model for visual learning of affordance-like cues. In: ECVP 2006. Proc. 29th European Conference on Visual Perception, St. Petersburg, Russia (August 2006)
Fritz, G., Paletta, L., Breithaupt, R., Rome, E., Dorffner, G.: Learning predictive features in affordance-based robotic systems. In: IROS 2006. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 3642–3647. Springer, Heidelberg (October 2006)
Fritz, G., Paletta, L., Kumar, M., Dorffner, G., Breithaupt, R., Rome, E.: Visual learning of affordance based cues. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 52–64. Springer, Heidelberg (2006)
Fritz, G., Paletta, L.: Reinforcement learning for the selection of predictive cues in affordance-based perception. In: ECVP 2006. Proc. 29th European Conference on Visual Perception, St. Petersburg, Russia (August 2006)
Frintrop, S.: VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search. LNCS (LNAI), vol. 3899. Springer, Heidelberg (2006) (also: PhD thesis, University of Bonn)
Frintrop, S., Hülse, M., Rome, E., Paletta, L.: Saliency detection with visual attention. Technical Report MACS/3/1.3 v1, Fraunhofer Institut für Autonome Intelligente Systeme, Sankt Augustin, Germany (2005)
May, S., Klodt, M., Rome, E., Breithaupt, R.: Gpu-accelerated affordance cueing based on visual attention. In: IROS 2007. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA (2007)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)
Quinlan, J.R.: C4.5 Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA (1993)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning). MIT Press, Cambridge, MA (1998)
Whitehead, S.D., Ballard, D.H.: Learning to perceive and act by trial and error. Machine Learning 7(1), 45–83 (1991)
Puterman, M.L.: Markov Decision Processes. John Wiley & Sons, New York (1994)
Paletta, L., Fritz, G.: Reinforcement learning of predictive features in affordance perception. In: Rome, E., Hertzberg, J., Dorffner, G. (eds.) Towards Affordance-based Robot Control – Proceedings of Dagstuhl Seminar 06231. LNCS (LNAI), vol. 4760, Springer, Heidelberg (February 2008)
Paletta, L., Fritz, G., Kintzler, F., Irran, J., Dorffner, G.: Learning to perceive affordances in a framework of developmental embodied cognition. In: ICDL 07. Proc. 6th International Conference on Development and Learning, London, UK (July 2007)
Janowicz, K.: Extending semantic similarity measurement by thematic roles. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M.J. (eds.) GeoS 2005. LNCS, vol. 3799, Springer, Heidelberg (2005)
Breithaupt, R., Frintrop, S., Hertzberg, J., Rome, E., Müller, B.S.: Specification of final demonstrator. Technical Report MACS/6/1.1 v2, Fraunhofer Institut für Autonome Intelligente Systeme, Sankt Augustin, Germany (2004)
Uğur, E., Doğar, M.R., Çakmak, M., Şahin, E.: The learning and use of traversability affordance using range images on a mobile robot. In: ICRA 2007. Proc. of the IEEE International Conference on Robotics and Automation, Conference: Rome, Italy, April 10–14, pp. 1721–1726. IEEE, Los Alamitos (2007)
Uğur, E., Doğar, M.R., Çakmak, M., Şahin, E.: The curiosity-driven learning of traversability affordance on a mobile robot. In: ICDL 2007. Proc. of the IEEE International Conference on Development and Learning, Conference: London, UK (July 11–13, 2007)
Breithaupt, R., Frintrop, S., Şahin, E., Hertzberg, J., Pölz, P., Rudol, P., Uğur, E., Doherty, P., Rome, E., Müller, B.S.: Report on experiment design. Technical Report MACS/6/4.1 v1, Fraunhofer Institut für Autonome Intelligente Systeme, Sankt Augustin, Germany (2004)
Paletta, L., Fritz, G., Kumar, M., Hertzberg, J., Schönherr, F.: Top-down and bottom-up symbol grounding. Technical Report MACS/3/1.1 v3, Joanneum Research Institute of Digital Image Processing Computational Perception (CAPE), Graz, Austria (2005)
Paletta, L., Fritz, G., Şahin, E., Kumar, M.: Affordance recognition from visual cues. Technical Report MACS/3/1.2 v1, Joanneum Research Institute of Digital Image Processing Computational Perception (CAPE), Graz, Austria (2005)
Paletta, L., Fritz, G., Rome, E., Frintrop, S., Hertzberg, J., Kumar, M.: Prototypical affordance based object detection for MACS scenario. Technical Report MACS/3/1.4 v1, Joanneum Research Institute of Digital Image Processing Computational Perception (CAPE), Graz, Austria (2005)
Rome, E., Paletta, L., Fritz, G., Surmann, H., May, S., Lörken, C.: Multi-sensor affordance recognition. Technical Report MACS/3/2.1 v2, Fraunhofer Institut für Autonome Intelligente Systeme, Sankt Augustin, Germany (2006)
Holz, D., Lörken., C.: Continuous 3d environment sensing for autonomous robot navigation and mapping. In: Proc. of the 9. Fachwissenschaftlicher Informatik-Kongress, Bonn, Germany, Lecture Notes in Informatics (LNI), pp.39–42 Gesellschaft für Informatik (GI) (March 2007)
Uğur, E.: Direct perception of traversability affordance on range images through learning on a mobile robot. M.Sc. thesis, Middle East Technical University, Kovan Laboratory, Ankara, Turkey (2006)
Doğar, M.R., Çakmak, M., Uğur, E., Şahin, E.: From primitive behaviors to goal-directed behavior using affordances. Technical Report METU-CENG-TR-2007-02, Middle East Technical University, Kovan Laboratory, Ankara, Turkey, Short version published for ICDL (2007)
Uğur, E., Doğar, M.R., Çakmak, M., Şahin, E.: From primitive behaviors to goal-directed behavior using affordances. In: IROS 2007. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA (2007)
Uğur, E., Doğar, M.R., Çakmak, M., Şahin, E.: Report on experimental results in simulator. Technical Report MACS/6/4.2 v1, Middle East Technical University Dept. of Computer Engineering, Ankara, Turkey (2007)
Doğar, M.R., Çakmak, M., Uğur, E., Şahin, E.: Report on experimental results in demonstrator. Technical Report MACS/6/4.3 v1, Middle East Technical University Dept. of Computer Engineering, Ankara, Turkey (2007)
Çakmak, M., Doğar, M.R., Uğur, E., Şahin, E.: Affordances as a framework for robot control. In: EpiRob 2007. Proc. of the International Conference on Epigenetic Robotics, Conference Piscataway, NJ, USA (November 5–7, 2007)
Çakmak, M.: Robot planning based on learned affordances. M.Sc. thesis, Middle East Technical University, Kovan Laboratory, Ankara, Turkey (2007)
Raubal, M.: Agent-based Simulation of Human Wayfinding: A Perceptual Model for Unfamiliar Buildings. PhD thesis, Institute for Geoinformation, Vienna University of Technology, Vienna, Austria (2001)
Schönherr, F.: Verankerung der Semantik veränderlicher Situations-Fakten und symbolischer Aktionen in der hybriden Roboterkontrollarchitekur DD&P, Fraunhofer series in information and communication technology 2004, 8. Shaker, Aachen (2004)
Neisser, U.: Cognitive Psychology. Prentice-Hall, Englewood Cliffs, NJ (1967)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rome, E. et al. (2008). The MACS Project: An Approach to Affordance-Inspired Robot Control. In: Rome, E., Hertzberg, J., Dorffner, G. (eds) Towards Affordance-Based Robot Control. Lecture Notes in Computer Science(), vol 4760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77915-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-77915-5_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77914-8
Online ISBN: 978-3-540-77915-5
eBook Packages: Computer ScienceComputer Science (R0)