iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-76856-2_30
Kernel Fusion for Image Classification Using Fuzzy Structural Information | SpringerLink
Skip to main content

Kernel Fusion for Image Classification Using Fuzzy Structural Information

  • Conference paper
Advances in Visual Computing (ISVC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4842))

Included in the following conference series:

Abstract

Various kernel functions on graphs have been defined recently. In this article, our purpose is to assess the efficiency of a marginalized kernel for image classification using structural information. Graphs are built from image segmentations, and various types of information concerning the underlying image regions as well as the spatial relationships between them are incorporated as attributes in the graph labeling. The main contribution of this paper consists in studying the impact of fusioning kernels for different attributes on the classification decision, while proposing the use of fuzzy attributes for estimating spatial relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chapelle, O., Haffner, P., Vapnik, V.: SVMs for histogram-based image classification. IEEE Transactions on Neural Networks, special issue on Support Vectors (1999)

    Google Scholar 

  2. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering object categories in image collections. In: Proc. IEEE Int. Conf. on Computer Vision (2005)

    Google Scholar 

  3. Neuhaus, M., Bunke, H.: Edit distance based kernel functions for attributed graph matching. In: 5th IAPR TC-15 Workshop on Graph-based Representations in Pattern Recognition, Poitier, France, pp. 352–361 (2005)

    Google Scholar 

  4. Neuhaus, M., Bunke, H.: A random walk kernel derived from graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 4109, pp. 191–199. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Aldea, E., Atif, J., Bloch, I.: Image Classification using Marginalized Kernels for Graphs. In: 6th IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, GbR 2007, Alicante, Spain. LNCS, vol. 4538, pp. 103–113. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the Kernel Matrix with Semidefinite Programming. Journal of Machine Learning Research 5, 27–72 (2004)

    Google Scholar 

  7. Bloch, I.: Fuzzy Spatial Relationships for Image Processing and Interpretation: A Review. Image and Vision Computing 23, 89–110 (2005)

    Article  Google Scholar 

  8. Brun, L., Mokhtari, M., Meyer, F.: Hierarchical watersheds within the combinatorial pyramid framework. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 34–44. Springer, Heidelberg (2005)

    Google Scholar 

  9. Haris, K., Estradiadis, S.N., Maglaveras, N., Katsaggelos, A.K.: Hybrid image segmentation using watersheds and fast region merging. IEEE Transactions on Image Processing 7(12), 1684–1699 (1998)

    Article  Google Scholar 

  10. Gaertner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: 16th Annual Conference on Computational Learning Theory, Washington, DC, USA, pp. 129–143 (2003)

    Google Scholar 

  11. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proc. 20st Int. Conf. on Machine Learning, pp. 321–328 (2003)

    Google Scholar 

  12. Mahé, P., Ueda, N., Akutsu, T., Perret, J.L., Vert, J.P.: Extensions of marginalized graph kernels. In: ICML 2004: Proc. 21st Int. Conf. on Machine Learning (2004)

    Google Scholar 

  13. Kuipers, B.: Modeling spatial knowledge. Cognitive Science 2, 129–153 (1978)

    Article  Google Scholar 

  14. Bloch, I., Ralescu, A.: Directional Relative Position between Objects in Image Processing: A Comparison between Fuzzy Approaches. Pattern Recognition 36, 1563–1582 (2003)

    Article  MATH  Google Scholar 

  15. Miyajima, K., Ralescu, A.: Spatial organization in 2d segmented images: representation and recognition of primitive spatial relations. Fuzzy Sets and Systems 65, 225–236 (1994)

    Article  Google Scholar 

  16. Bouchon-Meunier, B., Rifqi, M., Bothorel, S.: Towards general measures of comparison of objects. Fuzzy sets and Systems 84(2), 143–153 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

George Bebis Richard Boyle Bahram Parvin Darko Koracin Nikos Paragios Syeda-Mahmood Tanveer Tao Ju Zicheng Liu Sabine Coquillart Carolina Cruz-Neira Torsten Müller Tom Malzbender

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aldea, E., Fouquier, G., Atif, J., Bloch, I. (2007). Kernel Fusion for Image Classification Using Fuzzy Structural Information. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2007. Lecture Notes in Computer Science, vol 4842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76856-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76856-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76855-5

  • Online ISBN: 978-3-540-76856-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics