Abstract
Various kernel functions on graphs have been defined recently. In this article, our purpose is to assess the efficiency of a marginalized kernel for image classification using structural information. Graphs are built from image segmentations, and various types of information concerning the underlying image regions as well as the spatial relationships between them are incorporated as attributes in the graph labeling. The main contribution of this paper consists in studying the impact of fusioning kernels for different attributes on the classification decision, while proposing the use of fuzzy attributes for estimating spatial relationships.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chapelle, O., Haffner, P., Vapnik, V.: SVMs for histogram-based image classification. IEEE Transactions on Neural Networks, special issue on Support Vectors (1999)
Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering object categories in image collections. In: Proc. IEEE Int. Conf. on Computer Vision (2005)
Neuhaus, M., Bunke, H.: Edit distance based kernel functions for attributed graph matching. In: 5th IAPR TC-15 Workshop on Graph-based Representations in Pattern Recognition, Poitier, France, pp. 352–361 (2005)
Neuhaus, M., Bunke, H.: A random walk kernel derived from graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 4109, pp. 191–199. Springer, Heidelberg (2006)
Aldea, E., Atif, J., Bloch, I.: Image Classification using Marginalized Kernels for Graphs. In: 6th IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, GbR 2007, Alicante, Spain. LNCS, vol. 4538, pp. 103–113. Springer, Heidelberg (2007)
Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the Kernel Matrix with Semidefinite Programming. Journal of Machine Learning Research 5, 27–72 (2004)
Bloch, I.: Fuzzy Spatial Relationships for Image Processing and Interpretation: A Review. Image and Vision Computing 23, 89–110 (2005)
Brun, L., Mokhtari, M., Meyer, F.: Hierarchical watersheds within the combinatorial pyramid framework. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 34–44. Springer, Heidelberg (2005)
Haris, K., Estradiadis, S.N., Maglaveras, N., Katsaggelos, A.K.: Hybrid image segmentation using watersheds and fast region merging. IEEE Transactions on Image Processing 7(12), 1684–1699 (1998)
Gaertner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: 16th Annual Conference on Computational Learning Theory, Washington, DC, USA, pp. 129–143 (2003)
Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proc. 20st Int. Conf. on Machine Learning, pp. 321–328 (2003)
Mahé, P., Ueda, N., Akutsu, T., Perret, J.L., Vert, J.P.: Extensions of marginalized graph kernels. In: ICML 2004: Proc. 21st Int. Conf. on Machine Learning (2004)
Kuipers, B.: Modeling spatial knowledge. Cognitive Science 2, 129–153 (1978)
Bloch, I., Ralescu, A.: Directional Relative Position between Objects in Image Processing: A Comparison between Fuzzy Approaches. Pattern Recognition 36, 1563–1582 (2003)
Miyajima, K., Ralescu, A.: Spatial organization in 2d segmented images: representation and recognition of primitive spatial relations. Fuzzy Sets and Systems 65, 225–236 (1994)
Bouchon-Meunier, B., Rifqi, M., Bothorel, S.: Towards general measures of comparison of objects. Fuzzy sets and Systems 84(2), 143–153 (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aldea, E., Fouquier, G., Atif, J., Bloch, I. (2007). Kernel Fusion for Image Classification Using Fuzzy Structural Information. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2007. Lecture Notes in Computer Science, vol 4842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76856-2_30
Download citation
DOI: https://doi.org/10.1007/978-3-540-76856-2_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76855-5
Online ISBN: 978-3-540-76856-2
eBook Packages: Computer ScienceComputer Science (R0)