iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-74607-2_87
ENMIM: Energetic Normalized Mutual Information Model for Online Multiple Object Tracking with Unlearned Motions | SpringerLink
Skip to main content

ENMIM: Energetic Normalized Mutual Information Model for Online Multiple Object Tracking with Unlearned Motions

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4678))

Abstract

In multiple-object tracking, the lack in prior information limits the association performance. Furthermore, to improve tracking, dynamic models are needed in order to determine the settings of the estimation algorithm. In case of complex motions, the dynamic cannot be learned and the task of tracking becomes difficult. That is why online spatio-temporal motion estimation is of crucial importance. In this paper, we propose a new model for multiple target online tracking: the Energetic Normalized Mutual Information Model (ENMIM). ENMIM combines two algorithms: (i) Quadtree Normalized Mutual Information, QNMI, a recursive partitioning methodology involving a region motion extraction; (ii) an energy minimization approach for data association adapted to the constraint of lack in prior information about motion and based on geometric properties. ENMIM is able to handle typical problems such as large inter-frame displacements, unlearned motions and noisy images with low contrast. The main advantage of ENMIM is its parameterless and its capacity to handle noisy multi-modal images without exploiting any pre-processing step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Doucet, A., Godsill, S., Andrieu, C.: On sequential monte carlo sampling methods for bayesian filtering. Statistics and computing, 197–208 (2000)

    Google Scholar 

  2. Doucet, A., Gordon, N., de Freitas, J.: An introduction to sequential monte carlo methods. In: Sequential Monte Carlo Methods in Practice, Springer, New York (2001)

    Google Scholar 

  3. Kitagawa, G.: Monte carlo filter and smoother for non-gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 1–25 (1996)

    Google Scholar 

  4. Blake, A., Isard, M.: Active contours. Springer, Heidelberg (1998)

    Google Scholar 

  5. Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. Int. J. Computer Vision (1998)

    Google Scholar 

  6. Rong, L., Bar-Shalom, Y.: Tracking in clutter with nearest neighbor filter: analysis and performance. IEEE transactions on aerospace and electronic systems (1996)

    Google Scholar 

  7. Vermaak, J., Godsill, S., Pérez, P.: Monte carlo filtering for multi-target tracking and data association. IEEE Transactions on Aerospace and Electronic Systems (2005)

    Google Scholar 

  8. Fortmann, T., Bar-Shalom, Y., Scheffe, M.: Sonar tracking of multiple targets using joint probabilistic data association. IEEE Journ. Oceanic Engineering (1983)

    Google Scholar 

  9. Viola, P.: Alignment by maximization of mutual information. Ph.D. thesis, Massachusetts Institute of Technology, Boston, MA, USA (1995)

    Google Scholar 

  10. Collignon, A.: Multi-modality medical image registration by maximization of mutual information. Ph.D. thesis, Catholic University of Leuven, Leuven Belgium (1998)

    Google Scholar 

  11. Knops, Z.F., Maintz, J., Viergever, M., Pluim, J.: Registration using segment intensity remapping and mutual information. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 805–812. Springer, Heidelberg (2004)

    Google Scholar 

  12. North, B., Blake, A., Isard, M., Rittscher, J.: Learning and classification of complex dynamics. IEEE Transactions on Pattern Analysis and Machine Intelligence (2000)

    Google Scholar 

  13. Abed, A.E., Dubuisson, S., Béréziat, D.: Comparison of statistical and shape-based approaches for non-rigid motion tracking with missing data using a particle filter. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 185–196. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Blanc-Talon Wilfried Philips Dan Popescu Paul Scheunders

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

El Abed, A., Dubuisson, S., Béréziat, D. (2007). ENMIM: Energetic Normalized Mutual Information Model for Online Multiple Object Tracking with Unlearned Motions. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2007. Lecture Notes in Computer Science, vol 4678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74607-2_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74607-2_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74606-5

  • Online ISBN: 978-3-540-74607-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics