iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-74484-9_21
Non-linear Least Squares Features Transformation for Improving the Performance of Probabilistic Neural Networks in Classifying Human Brain Tumors on MRI | SpringerLink
Skip to main content

Non-linear Least Squares Features Transformation for Improving the Performance of Probabilistic Neural Networks in Classifying Human Brain Tumors on MRI

  • Conference paper
Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Abstract

The aim of the present study was to design, implement, and evaluate a software system for discriminating between metastases, meningiomas, and gliomas on MRI. The proposed classifier is a modified probabilistic neural network (PNN), incorporating a second degree least squares features transformation (LSFT) into the PNN classifier. Thirty-six textural features were extracted from each one of 75 T1-weighted post-contrast MR images (24 metastases, 21 meningiomas, and 30 gliomas). Classification performance was evaluated employing the leave-one-out method and for all possible textural feature combinations. LSFT enhanced the performance of the PNN, achieving 93.33% in discriminating between the three major types of human brain tumors, against 89.33% scored by the PNN alone. Best feature combination for achieving highest discrimination power included the mean value and entropy, which reflect specific properties of texture, i.e. signal strength and inhomogeneity. LSFT improved PNN performance, increased class separability, and resulted in dimensionality reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shen, S., Sandham, W., Granat, M., Sterr, A.: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans. Inf. Technol. Biomed. 9, 459–467 (2005)

    Article  Google Scholar 

  2. Soltanian-Zadeh, H., Peck, D.J., Windham, J.P., Mikkelsen, T.: Brain tumor segmentation and characterization by pattern analysis of multispectral NMR images. NMR Biomed. 11, 201–208 (1998)

    Article  Google Scholar 

  3. Lerski, R.A., Straughan, K., Schad, L.R., Boyce, D., Bluml, S., Zuna, I.: MR image texture analysis–an approach to tissue characterization. Magn. Reson. Imaging 11, 873–887 (1993)

    Article  Google Scholar 

  4. Schad, L.R., Bluml, S., Zuna, I.: MR tissue characterization of intracranial tumors by means of texture analysis. Magn. Reson. Imaging 11, 889–896 (1993)

    Article  Google Scholar 

  5. Herlidou-Meme, S., Constans, J.M., Carsin, B., Olivie, D., Eliat, P.A., Nadal-Desbarats, L., Gondry, C., Le Rumeur, E., Idy-Peretti, I., de Certaines, J.D.: MRI texture analysis on texture test objects, normal brain and intracranial tumors. Magn. Reson. Imaging 21, 989–993 (2003)

    Article  Google Scholar 

  6. Cho, Y.-D., Choi, G.-H., Lee, S.-P., Kim, J.-K.: 1H-MRS metabolic patterns for distinguishing between meningiomas and other brain tumors. Magnetic Resonance Imaging 21, 663–672 (2003)

    Article  Google Scholar 

  7. Tate, A.R., Majos, C., Moreno, A., Howe, F.A., Griffiths, J.R., Arus, C.: Automated classification of short echo time in in vivo 1H brain tumor spectra: A multicenter study. Magn Reson Med. 49, 29–36 (2003)

    Article  Google Scholar 

  8. Devos, A., Lukas, L., Suykens, J.A., Vanhamme, L., Tate, A.R., Howe, F.A., Majos, C., Moreno-Torres, A., van der Graaf, M., Arus, C., Van Huffel, S.: Classification of brain tumours using short echo time 1H MR spectra. J. Magn. Reson. 170, 164–175 (2004)

    Article  Google Scholar 

  9. Lukas, L., Devos, A., Suykens, J.A., Vanhamme, L., Howe, F.A., Majos, C., Moreno-Torres, A., Van der Graaf, M., Tate, A.R., Arus, C., Van Huffel, S.: Brain tumor classification based on long echo proton MRS signals. Artif Intell Med. 31, 73–89 (2004)

    Article  Google Scholar 

  10. Menze, B.H., Lichy, M.P., Bachert, P., Kelm, B.M., Schlemmer, H.P., Hamprecht, F.A.: Optimal classification of long echo time in vivo magnetic resonance spectra in the detection of recurrent brain tumors. NMR Biomed. 19, 599–609 (2006)

    Article  Google Scholar 

  11. Simonetti, A.W., Melssen, W.J.: Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification. NMR Biomed. 18, 34–43 (2005)

    Article  Google Scholar 

  12. Devos, A., Simonetti, A.W., van der Graaf, M., Lukas, L., Suykens, J.A., Vanhamme, L., Buydens, L.M., Heerschap, A., Van Huffel, S.: The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. J. Magn. Reson. 173, 218–228 (2005)

    Article  Google Scholar 

  13. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3, 610–621 (1973)

    Google Scholar 

  14. Galloway, M.M.: Texture analysis using grey level run lengths. Comp. Graph. and Image Proc. 4, 172–179 (1975)

    Google Scholar 

  15. Theodoridis, S., Koutroumbas, K.: Pattern recognition. Academic Press, New York (1999)

    Google Scholar 

  16. Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)

    Article  Google Scholar 

  17. Ahmed, N., Rao, R.: Orthogonal transforms for digital signal processing. Springer, Heidelberg (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Georgiadis, P. et al. (2007). Non-linear Least Squares Features Transformation for Improving the Performance of Probabilistic Neural Networks in Classifying Human Brain Tumors on MRI. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74484-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74484-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74482-5

  • Online ISBN: 978-3-540-74484-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics